Что обеспечивает энергия гамма квантов
Перейти к содержимому

Что обеспечивает энергия гамма квантов

  • автор:

Гамма-излучение, виды, свойства и применение

«Гамма-излучение — это разновидность электромагнитного излучения, которое характеризуется очень высокой энергией и длиной волны. Оно возникает в результате ядерных реакций и распада радиоактивных элементов. «

Содержание:

2. Виды гамма-излучения

Открытие гамма-излучения

Это одно из самых важных открытий в истории физики. В 1865 году немецкий физик Вильгельм Конрад Рентген обнаружил, что некоторые вещества испускают невидимые лучи, которые могут проникать через непрозрачные материалы. Эти лучи были названы рентгеновскими лучами, в честь немецкого физика Рентгена.

Вильгельм Конрад Рентген

Открытие рентгеновских лучей стало настоящим прорывом в науке, поскольку они позволили ученым изучать структуру атомов и молекул. Оно нашло применение в медицине, где они используются для диагностики различных заболеваний.

В 1900 году, когда немецкий физик Макс фон Лауэ обнаружил, что при прохождении рентгеновских лучей через кристаллы, они вызывают рассеяние, которое можно наблюдать с помощью дифракции.

Макс фон Лауэ

Это открытие привело к пониманию того, что рентгеновские лучи являются электромагнитными волнами и что существует еще один тип электромагнитного излучения, который не виден глазу, но может быть обнаружен с помощью специальных приборов.

В 1914 году, американский физик Пьер Кюри и его ассистент Гамильтон использовали специальный прибор, называемый гамма-спектрометром, для обнаружения гамма-лучей от радиоактивных источников.

Ученые обнаружили, что гамма-лучи имеют высокую энергию и обладают высокой проникающей способностью, и что они могут быть использованы для изучения свойств радиоактивных элементов.

Пьер Кюри

Однако, открытие рентгеновских лучей было не единственным достижением в области физики. В 1932 году английский физик Джеймс Чедвик открыл нейтрон, который является частицей, не имеющей электрического заряда. Нейтроны также играют важную роль в ядерной физике и используются для изучения строения атомных ядер.

Таким образом, открытие гамма-излучения и рентгеновских лучей является одним из ключевых моментов в развитии физики и других наук. Эти открытия позволили ученым лучше понимать структуру материи и использовать их для решения различных задач в науке и технике.

Виды гамма-излучения

Гамма-излучения имеют длину волны в диапазоне от 10^ до 10^ метров и могут быть обнаружены с помощью специальных детекторов. В зависимости от источника гамма-излучение может иметь различные свойства и применяться в различных областях науки и техники.

  • Гамма-лучи низкой энергии (0,1-1 МэВ) используются для изучения структуры атомов и молекул с помощью гамма-резонансной спектроскопии.
  • Средней энергии (1-10 МэВ) применяются в медицине для диагностики и лечения онкологических заболеваний, а также для радиотерапии.
  • Высокой энергии (более 10 МэВ) могут использоваться в научных исследованиях для изучения свойств материалов и создания источников энергии.
  • Очень высокой энергии (десятки и сотни МэВ) могут создавать космические лучи, которые проникают в атмосферу Земли и могут вызывать ядерные реакции в верхних слоях атмосферы.

  • Гамма-радиация может быть использована для обнаружения ядерных материалов и радиоактивных веществ в окружающей среде.
  • Гамма-излучением высокой интенсивности можно создавать лазеры на основе атомов, что может привести к созданию новых технологий в области оптики и квантовых вычислений.
  • Гамма-кванты могут быть использованы для создания гамма-лазеров, которые могут работать на длине волны порядка нанометра и иметь высокую мощность.

Свойства гамма-излучения

Высокая энергия

Фотон гамма-излучения имеет энергию, которая гораздо больше, чем энергия фотонов других видов излучения. Эта энергия измеряется в единицах, называемых электрон-вольтами (эВ). Один эВ равен энергии, которую получает электрон, когда он ускоряется до скорости один метр в секунду. Гамма-излучение способно проникать через большинство материалов, включая кости, мышцы и ткани организма.

Фотон гамма-излучения

Ионизация

Гамма-кванты обладают высокой энергией, что означает, что они могут ионизировать атомы в веществе, которое они проходят. Это может привести к образованию свободных радикалов, которые могут повредить клетки и ткани.

Невидимость

Излучение невидимо для человеческого глаза, поэтому не может быть обнаружено визуально. Однако, может зафиксировано с помощью специальных детекторов.

Длина волны

Короткая длина волны — 10^-14 м, что позволяет проникать глубоко в ткани и органы. Это делает гамма-излучение полезным для диагностики заболеваний, связанных с изменениями в тканях и органах.

Воздействие на клетки

Гамма-излучение может повреждать клетки, что может привести к различным заболеваниям, таким как рак. Однако, при правильном использовании, гамма-лучи могут быть использованы для лечения рака и других заболеваний.

Длина волны

Источники гамма-излучения

Вот несколько основных источников гамма-излучения:

  • Солнечные вспышки: могут вызвать образование гамма-лучей в результате взаимодействия магнитных полей Солнца с частицами в атмосфере Земли.
  • Радиационное излучение: ядерные реакторы или ускорители частиц, могут производить гамма-излучение в процессе своей работы.
  • Радиоактивные материалы: напрмер, уран, торий и плутоний, могут излучать гамма-лучи при распаде своих ядер.

Радиация

  • Космические лучи: такие как протоны, нейтроны и другие заряженные частицы, могут попасть на Землю и вызвать образование гамма-лучей при взаимодействии с атмосферой.
  • Атомные бомбы: при ядерных взрывах образуются гамма-лучи в результате ядерного деления или синтеза.
  • Рентгеновские аппараты: могут производить небольшое количество гамма-излучения при работе.
  • Другие источники: например, космические объекты, такие как черные дыры, и солнечные вспышки.

Доза гамма-излучения

Доза гамма-излучения (Гр) — это единица измерения, используемая для выражения количества энергии, поглощенной телом в результате воздействия гамма-излучения. Единица измерения Гр является международной и используется во многих странах мира.

Гр измеряется в джоулях на килограмм (Дж/кг). Для расчета дозы необходимо знать мощность дозы (Вт/кг), продолжительность воздействия излучения (с) и массу тела (кг). Формула для расчета дозы выглядит следующим образом:

D = P * t * m

  • P — мощность дозы в Вт/кг
  • t — продолжительность воздействия в секундах
  • m — масса тела в килограммах

Например, если человек массой 70 кг находится в зоне с мощностью дозы 1 Вт/кг в течение 1 часа, то его доза будет равна:

D = 1 Вт/кг * 1 ч * 70 кг = 70 Дж/кг = 0,07 Гр

Таким образом, доза гамма-излучения зависит от мощности дозы, продолжительности воздействия и массы тела. При работе с источниками радиоактивного излучения необходимо учитывать дозу и принимать меры для ее снижения.

Доза гамма-излучения

Применение гамма-излучения

Широкий спектр применения в различных областях, включая медицину, науку, промышленность и безопасность. Ниже представлены некоторые из наиболее распространенных способов использования гамма-излучения:

  • Медицина: часто используется для диагностики и лечения различных заболеваний. Например, оно может применяться для обнаружения рака, исследования внутренних органов, лечения опухолей и даже для улучшения иммунной системы
  • Наука: используется для изучения свойств ядер и атомных реакций, а также для исследования радиоактивных изотопов. Кроме того, гамма-излучение можно применять для создания рентгеновских снимков и других исследований в области медицины и физики.

Применение гамма-излучения

  • Производство: применятся в производстве для обработки различных материалов, таких как металлы, керамика и пластмассы. Оно может применяться для улучшения свойств материала, например, увеличения прочности или улучшения качества поверхности.
  • Безопасность: гамма-излучение важно для обеспечения безопасности на атомных электростанциях, рентгеновских лабораториях, радиологических отделениях и других местах с высоким уровнем радиации. Оно используется для обнаружения радиационных опасностей и контроля уровня радиации.
  • Астрофизика: используется в астрофизике для изучения космических объектов и процессов. Например, с помощью гамма-излучения можно исследовать черные дыры, нейтронные звезды и другие космические объекты.

Это лишь некоторые из множества способов использования гамма-излучения. Оно играет важную роль во многих областях науки и технологий, и его применение продолжает расширяться.

Что обеспечивает энергия гамма квантов

При создании этого раздела в основном были использованы материалы монографий [1,8] и обзора [7].

  • Изотопные источники гамма-квантов
  • Гамма-кванты из ядерных реакций
  • Тормозное излучение от электронных ускорителей
  • Аннигиляция на лету быстрых позитронов
  • Меченые фотоны
  • Комптон-эффект на покоящемся электроне
  • Обратное комптоновское рассеяние лазерных фотонов на электронах
  • Квазимонохроматическое излучение фотонов из ориентированных монокристаллов
Изотопные источники гамма-квантов

Обычно в качестве радиоактивных источников гамма-квантов используются бета-активные изотопы. На рис. 1 в качестве примера показаны схемы распада 60 Co и 22 Na. Ядро 60 Co в основном распадается на возбужденное состояние 4 + дочернего ядра 60 Ni посредством разрешенного гамов-теллеровского перехода. Это возбужденное состояние переходит в основное посредством каскада E2-переходов с энергиями гамма-квантов 1173 и 1333 кэВ. Ядро 22 Na испытывает Также, как и в случае 60 Co, распад происходит в основном на возбужденное состояние дочернего ядра. 22 Na является источником γ с энергией 1275 и 511 кэВ. Последние образуются в результате аннигиляции позитронов.
Кроме бета-активных изотопов в качестве источников гамма-квантов используются также изомеры, например 119m Sn. Период полураспада измерного состояния 119m Sn T1/2 = 293.1 дня, энергия 23.9 кэВ. Кроме гамма-линии от распада изомерного состояния 119m Sn является источником рентгеновских квантов с энергиями 25.2 и 28.6 кэВ, которые сопровождают процесс внутренней конверсии, конкурирующим с гамма-переходом.
Собственные ширины γ на много порядков меньше энергий γ поэтому радиоактивные источники можно считать монохроматическими. Интенсивность радиоактивных источников может быть доведена до 10 14 фотонов в секунду.
В табл. 1 показаны бета-активные изотопы, которые используются в образцовых спектрометрических источниках (ОСГИ), применяемых в качестве рабочих эталонов для поверки и градуировки средств измерений фотонного излучения.

Таблица 1. Изотопы образцовых спектрометрических источников гамма-квантов
Гамма-кванты из ядерных реакций

Монохроматические γ-кванты более высокой энергии можно получить, используя ядерные реакции, которые приводят к сильному возбуждению конечного ядра. Если ядро сильно возбуждено, то вероятность его распада Г определяется соотношением

где Гx — вероятность испускания ядром нуклонов и более сложных частиц, а Гγ — вероятность излучения γ-кванта.
Если энергия возбуждения ядра меньше энергии связи нуклона, то Гx = 0 и Г = Гγ. Вероятность излучения γ-кванта Гγ также велика при возбуждениях ядер, вызванных захватом медленных нейтронов. В этом случае Г= Гn + Гγ, где Гn — вероятность обратного испускания нейтрона, причем для многих ядер Гγ > Гn. Испускание γ-квантов при захвате медленных нейтронов называется радиационным захватом или реакцией (n,γ).
При радиационном захвате медленных нейтронов обычно образуются γ-кванты с энергиями от 4 до 11 МэВ (энергии связи нейтронов в различных ядрах). Энергетический спектр γ-квантов такого источника содержит одну или несколько линий.
Создание достаточно интенсивных источников γ-квантов путем радиационного захвата нейтронов предполагает использование мощных ядерных реакторов. Современные ядерные реакторы позволяют получать интенсивности γ-квантов радиационного захвата до 10 8 квант/с.
Неизбежным недостатком γ-источников такого типа является большой нейтронный фон.
Если энергия возбуждения ядра значительно превышает энергию связи нуклона, то, как правило, возбуждение будет сниматься испусканием протонов, нейтронов или более сложных частиц. Однако и здесь возможны особые случаи, когда и Гγ
Рассмотрим в качестве примера состояние 1 + в ядре 8 Ве, имеющее энергию возбуждения 17.64 МэВ. Оно лежит ниже порога испускания нейтрона (18.9 МэВ), а обычный распад ядра 8 Ве, идущий по схеме запрещен, поскольку система двух может находиться лишь в состояниях 0 + , 2 + , 4 + и т. д. Поэтому указанное выше состояние в 8 Ве распадается с излучением γ-кванта. Спектр γ-квантов содержит две линии: при переходе в основное состояние 0 + испускаются γ-кванты с энергией 17.64 МэВ (узкая линия), при переходе на первое возбужденное состояние 2 + — γ-кванты с энергией 14.74 МэВ (широкая линия), При этом интенсивность первой линии примерно в два раза превосходит интенсивность второй.
Для возбуждения состояния ядра 8 Ве с энергией 17.64 МэВ используется захват ядром 7 Li протонов с Ер = 440кэВ:

За счет уменьшения толщины литиевой мишени энергетическая ширина γ0-линии (17.64 МэВ) может быть доведена примерно до 12 кэВ.
Варьируя энергию протонов Ер, можно плавно менять энергию γ-квантов поскольку эти величины связаны соотношением

Однако возможности изменения энергии сильно ограничены, так как увеличение энергии протонов приводит к быстрому уменьшению интенсивности γ-излучения. Так, уже при Ер = 800-900 кэВ интенсивность γ-квантов уменьшается примерно в 20 раз. Кроме того, начинает доминировать γ-линия с меньшей энергией.
Другой часто используемой реакцией является реакция 19 F(p,αγ) 16 О, в которой генерируются три γ-линии с энергиями 6.14, 6.92 и 7.12 МэВ, возникающие при распаде возбужденных состояний ядра 16 О. Их относительные интенсивности можно менять, варьируя энергии протонов. Так, при Ер = 2.05 МэВ 80% γ-квантов испускается с энергией 7.12 МэВ. Энергетическая ширина γ-линии 130 кэВ.
Реакция радиационного захвата протонов легкими ядрами наиболее удобна для создания γ-источников подобного типа. Одна из причин этого в том, что энергии связи протонов в легких ядрах велики, что позволяет получать монохроматические γ-кванты довольно больших энергий. Так, в реакции 3 Н(р,γ) 4 Не (энергия связи протона в 4 Не — 19.81 МэВ) можно получить γ-кванты с энергией более 20 МэВ. Энергетическая ширина γ-пучка в этой реакции может быть доведена до 40 кэВ. Плавное увеличение энергии протонов приводит и к плавному увеличению энергии γ-квантов. Верхняя граница энергии протонного пучка определяется выходом нейтронов в конкурирующей реакции 3 Н(р,n), начинающейся при Ер = 1.02 МэВ.
Получение удобного для экспериментов пучка монохроматических γ-квантов с энергиями существенно большими 20 МэВ в реакции (p,γ), так же как и в других ядерных реакциях, невозможно. Это связано с тем, что даже легкие ядра, захватывая протоны с Ер>1МэВ, оказываются в области энергий возбуждения, где уровни составного ядра начинают перекрываться. Кроме того, при возрастании энергии возбуждения увеличивается доля, каскадных γ-переходов. Все это приводит к сильному усложнению спектра γ-квантов и неизбежной конкуренции распадов с вылетом нуклонов и других частиц. Недостаток источников этого типа заключается также в сравнительно невысокой интенсивности γ
Диапазон плавного изменения энергии γ-квантов у источников рассматриваемого типа сильно ограничен.

Тормозное излучение от электронных ускорителей

Двигаясь с ускорением, быстрые электроны испускают электромагнитное излучение, называемое тормозным. Для получения тормозного γ достаточно поток электронов направить на любую мишень. В этом случае тормозное излучение возникает за счет ускоренного движения электронов в кулоновском поле ядер и атомарных электронов мишени.
Энергетический спектр γ-квантов тормозного излучения непрерывен и имеет верхнюю границу Т. Если полная энергия электронов до взаимодействия с мишенью равна Е0, то

Т = Е0 — mc 2 , (1)

где mc 2 — энергия покоя электрона (0.511 МэВ). Исключая область вблизи верхней границы, энергетический спектр тормозного излучения подчиняется простой зависимости l/Eγ, где Eγ — энергия испущенного γ-кванта.
Угловое распределение тормозного излучения обладает азимутальной симметрией. Оно определяется лишь величиной угла θ между направлениями движения фотонов и первичных электронов и характеризуется резким максимумом в направлении движения электронного пучка до взаимодействия с мишенью (т. е. при θ Наибольшая доля радиации заключена в пределах малого для релятивистских электронов угла θ Отсюда следует, что по мере увеличения энергии электронов тормозное излучение сосредоточивается во все более малом телесном угле.

Рис. 2. Спектры тормозного излучения для платиновой мишени при различных Е0

Поскольку сечение тормозного излучения быстро растет с увеличением атомного номера мишени, то последняя обычно изготовляется из вещества с большим Z (платина, вольфрам и др.). На рис. 2 в качестве примера приведены спектры тормозного излучения при различных Е0, рассчитанные для платиновой мишени.

Методы монохроматизации гамма-излучения высокой энергии

Аннигиляция на лету быстрых позитронов

Суть метода состоит в использовании процесса аннигиляции на лету позитронов, движущихся с релятивистскими скоростями.
Быстрый позитрон с энергией Epos, двигаясь в веществе, может испытать аннигиляцию, не успев потерять сколько-нибудь значи­тельную часть своей первоначальной энергии. При аннигиляции позитрона могут образовываться два и более фотонов. Наиболее вероятный процесс — двухфотонная аннигиляция. Именно этот процесс и приводит к образованию монохроматических фотонов. Образование большего числа фотонов, например трех, приводит к непрерывному энергетическому распределению. Однако в связи с тем, что сечение трехфотонной аннигиляции мало, ею можно пренебречь (трехфотонная аннигиляция происходит в 370 раз реже, чем двухфотонная).
При двухфотонной аннигиляции, которую и будем рассматривать в дальнейшем, образуется два γ-кванта с энергиями

(2)
Eγ2 = Epos — Eγ1+ mc 2 , (3)

где θ — угол между направлением испускания первого фотона и направлением движения позитрона.
Наиболее вероятно испускание двух фотонов в противоположных направлениях под углами, близкими к 0 и 180° относительно направления движения позитрона. При этом фотон, испускаемый под углом 0°, т. е. в переднем направлении, уносит практически всю энергию. Действительно, полагая θ = 0 и mc 2 pos, из (2 и 3) получаем

Рис. 3. Зависимость энергии аннигиляционного фотона, летящего в переднем направлении, от угла для позитронов с полной энергией 20 МэВ

Зависимость энергии аннигиляционных γ-квантов от угла θ (см. формулу (2) и рис. 3) приводит к тому, что спектр фотонов в конечном телесном угле не является строго монохроматичным. При увеличении энергии позитрона энергетический разброс уменьшается. Если пренебречь многократным рассеянием позитронов в веществе мишени, где происходит аннигиляция, то угол, в котором энергетический разброс не превышает величины

согласно оценкам равен (2Epos) 1/2 . Поэтому, выделяя аннигиляционные фотоны, летящие в пределах достаточно малого телесного угла, можно достичь весьма высокой степени монохроматизации γ-излучения. Быстрые позитроны, необходимые для создания аннигиляционногоизлучения, получают,направляя релятивистские электроны с полной энергией Eel на мишень (конвертор) с высоким Z (тяжелые ядра). Тормозное излучение, генерируемое в мишени, образует в этой же мишени электронно-позитронные пары. Позитроны выходят из конвертора в широком телесном угле и имеют полные энергии в интервале от 0 до Eel — 2mс 2 . Располагающийся после конвертора магнитный анализатор выделяет позитроны, энергии которых заключены в узком интервале. Эти позитроны либо сразу, либо после дополнительного ускорения направляются на аннигиляционную мишень с малым Z (легкие ядра). Образующиеся в этой мишени аннигиляционные γ-кванты и используются далее для проведения эксперимента.
Поскольку процесс образования аннигиляционных фотонов является двухступенчатым, то выход монохроматического излучения очень мал. Обычно вероятность рождения электроном позитрона в конверторе не превышает а выход аннигиляционных фотонов на один позитрон приблизительно равен . Таким образом, выход аннигиляционных фотонов на один электрон составляет величину не более . Очевидно поэтому, что создание интенсивных потоков аннигиляционного γ-излучения возможно лишь при наличии сильноточных электронных ускорителей.

Рассмотрим в качестве примера монохроматор (рис. 4), работавший в Ливерморе (Калифорнийский университет, США) [2,3].

Рис. 4. Установка для создания квазимонохроматических фотонов в Ливерморе (США).

Электроны с энергией 150 кэВ инжектировались в первую секцию линейного ускорителя. В конце секции перед попаданием на конвертор они имели энергию около 10 МэВ. Конвертор, изготовленный из тантала (Z = 73) или вольфрама (Z = 74), имел толщину около 2.5 мм. Позитроны, образующиеся в конверторе, фокусировались магнитной линзой и ускорялись двумя следующими секциями линейного ускорителя примерно до 30 МэВ. Перестройка секций ускорителя с режима ускорения электронов на режим ускорения позитронов и наоборот осуществлялась поворотом фазы высокочастотного электрического напряжения. Полный выход позитронов на один электрон был равен . С учетом того что магнитный анализатор отбирал для дальнейшего ускорения позитроны с разбросом по энергии не более 1%, выход позитронов на один электрон составлял величину около
Необходимо отметить, что энергия позитронов, вводившихся во вторую секцию линейного ускорителя, была примерно в три раза меньше энергии электронов, попадавших на конвертор. Это было связано с тем, что энергетическое распределение позитронов, выходящих из конвертора, имеет максимум при энергии, соответствующей примерно одной трети энергии электронов. В качестве аннигиляционной мишени использовался образец из LiH толщиной 0.15 мм. Выход аннигиляционных фотонов на один позитрон для такой мишени был равен
Как уже упоминалось, конверторы изготовляют из материалов с высоким Z, в связи с тем что выход позитронов зависит от вероятности двух последовательных процессов: образования тормозного γ-излучения и рождения электронно-позитронных пар, причем сечение каждого из этих процессов растет, как Z 2 .
Выбор в качестве материала для аннигиляционной мишени веществ с малым Z объясняется необходимостью максимального подавления относительного вклада тормозного позитронов, которое неизбежно сопровождает аннигиляционное Поскольку выход аннигиляционных порционален Z, то для легких ядер соотношение между числом аннигиляционных и тормозных будет максимальным.

Рис. 5. Спектры , образующихся при бомбардировке бериллиевой мишени позитронами различной энергии

Таким образом, спектр , возникающих при попадании на аннигиляционную мишень быстрых позитронов, не является строго монохроматическим, так как содержит тормозное излучение. Энергетические спектры , рассчитанные для случая бериллиевой мишени, приведены на рис. 5. При этом полагалось dEγ, равным 1 МэВ, а форма аннигиляционного пика считалась гауссовой и соответствовала энергетическому разрешению 5%. Видно, что с увеличением Epos соотношение между числом аннигиляционных и тормозных ухудшается. Действительно, число аннигиляционных растет, как Epos, а число тормозных в низкокоэнергетичной части спектра растет примерно как E 2 pos.
Неизбежное присутствие тормозного -излучения является недостатком описываемого метода монохроматизации, так как приводит к необходимости получения конечного результата в виде разности двух измерений. Вначале измеряют выход Ypos(Epos) реакции с пучком фотонов, генерируемых аннигиляционной мишенью при попадании на нее позитронов энергии Epos, а затем — выход реакции Yel(Eel) с пучком фотонов, возникающих в аннигиляционной мишени при попадании на нее такого же числа позитронов или электронов той же энергии. В последнем случае спектр фотонов чисто тормозной и разность Ypos(Epos) — Yel(Eel) есть выход исследуемой реакции, отвечающий пику аннигиляционного излучения.
Однако извлечение корректной информации о сечениях реакций на основании экспериментальных данных о выходах представляет из себя нетривиальную задачу и требует хорошего знания параметров аппаратной функции [4].
Сравнительно невысокая интенсивность аннигиляционных пучков ограничивает их эффективное использование одним типом экспериментов — измерением эффективных сечений фотонейтронных реакций. Недостаточно высокая интенсивность аннигиляционного излучения в таких экспериментах может быть компенсирована большим (до нескольких сот граммов) весом исследуемой мишени.

Меченые фотоны
Рис. 6. Схема монохроматора, использующего принцип меченых фотонов

В этом методе исследуемой мишени облучается пучком тормозного излучения, и для каждого случая фотоядерной реакции определяется энергия фотона, который эту реакцию вызвал. Осуществляется это следующим образом (см. рис. 6). Пучок электронов выводится из ускорителя и направляется на тормозную мишень, расположенную вне ускорительной камеры. Электрон с энергией E0, взаимодействуя с тормозной мишенью, испускает фотон с энергией Eγ и выходит из нее с меньшей энергией Е. Фотон попадает далее на исследуемую мишень и вызывает фотоядерную реакцию. Поскольку E0, Е и Eγ однозначно связаны соотношением

то, измерив энергию Е рассеянного электрона и зарегистрировав его на совпадение с продуктами фотоядерной реакции, можно найти энергию Eγ фотона, который эту реакцию вызвал (E0 известна, так как определяется режимом работы ускорителя). Энергию рассеянного электрона Е обычно определяют с помощью магнитного спектрометра.
Энергию Eγ можно варьировать, меняя энергии E0 и Е.
Энергетическое разрешение метода меченых фотонов определяется главным образом разрешением магнитного спектрометра и в принципе может быть выше энергетического разрешения метода аннигиляции на лету быстрых позитронов. Метод меченых фотонов был впервые реализован на синхротроне Корнельского университета (США). Монохроматор, использующий метод меченых фотонов, был создан также в 1961 г. в Иллинойском университете (США) [5]. Его энергетическое разрешение равно 0.67% для фотонов с энергией 11-19 МэВ. Максимальная интенсивность пучка фотонов составила величину 5 . 10 5 фотонов в секунду. Вторичные электроны детектировались шестью пластиковыми сцинтилляторами, расположенными в фокальной плоскости магнитного спектрометра. Одновременно фиксировалась энергия электронов Е и время их регистрации. Энергия нейтронов из реакций
К недостаткам метода меченых фотонов следует отнести необходимость непосредственной регистрации продуктов ядерной реакции, что не позволяет использовать ряд методов регистрации, например, метод наведенной активности. Один из наиболее перспективных путей повышения интенсивности пучка меченых фотонов — использование линейных ускорителей со стопроцентным рабочим циклом. Однако, даже на таких ускорителях удается использовать лишь часть интенсивности электронных пучков (см. табл. 2). Основное ограничение на интенсивность накладывает быстродействие системы регистрации. (Характерное разрешающее время в системах меченных фотонов составляет ~1 нс.)

Таблица 2. Параметры систем мечения фотонов на электронных ускорителях с большим коэффициентом заполнения
Ускоритель Ee, МэВ Je, мкА k,% Eγ, МэВ ε J, мкА I, с -1
Микротрон, Майнц 180 60 100 80-174 60-65 5 . 10 7
Микротрон, Иллинойс 67 13 100 6-30 0.1 ~10 7
Линейный ускоритель, Сендай 600 0.5 80 120-530 0.1 3 . 10 6

Здесь Ee — энергия электронов, Je — ток электронов, k — коэффициент заполнения пучка, Eγ — энергия гамма-квантов, — эффективность системы мечения, J — используемый ток электронов при работе в режиме мечения фотонов, I — поток меченных фотонов в диапазоне ΔEγ/Eγ

Комптон-эффект на покоящемся электроне

Для создания источника монохроматических фотонов регулируемой энергии можно использовать комптон-эффект на покоящемся и движущемся электроне (так называемый прямой и обратный комптон-эффект). В первом случае пучок монохроматических , образующихся в какой-либо ядерной реакции, испытывает рассеяние на электронах неподвижной мишени. Во втором — фотонный пучок мощного лазера пучок рассеивается на встречном пучке высокоэнергичных монохроматических электронов .
Использование прямого комптон-эффекта позволяет устранить один из наиболее существенных недостатков пучков γ образующихся в ядерных реакциях — невозможность плавной регулировки энергии фотонов. Действительно, энергия Eγ0 падающего фотона связана с энергией γ фотона после комптоновского рассеяния следующим соотношением:

где mc 2 — энергия покоя электрона, а φ — угол между направлениями движения фотона до и после рассеяния. Таким образом, энергия рассеянного фотона однозначно определяется величиной угла φ, меняя который можно получить фотоны любой энергии в интервале от mc 2 /2 до γ0.

Рис. 7. Принцип использования прямого комптоновского рассеяния

Если рассеиватель занимает участок сферической поверхности, на которой расположены источник монохроматических фотонов фиксированной энергии и исследуемая мишень, то энергия всех фотонов, попадающих на исследуемую мишень, будет одной и той же (рис. 7). Эту энергию можно менять, перемещая либо мишень, либо -источник вдоль поверхности сферы.

В первых экспериментах с монохроматором такого типа использовались -кванты радиационного захвата тепловых нейтронов пластинкой кадмия (рассеиватель — графит). Интенсивность рассеянных -квантов была такой, что на расстоянии 10 м от источника на площадку в 1 см 2 падал 1 фотон в секунду в интервале энергий 1 эВ. Энергия -квантов могла плавно меняться в интервале от 0.1 до 8.0 МэВ.
В другой установке этого типа использовались -кванты радиационного захвата нейтронов в Ti и Ni. Рассеиватель изготовлялся из алюминия. Энергия рассеянных менялась от 0.5 до 8.5 МэВ. Энергетическое разрешение было равно 1-3%, а интенсивность фотонов 1 квант/эВ . с . см 2 .
Недостаток этого метода в том, что энергия рассеянных фотонов ограничена сверху и без того не слишком высокой энергией радиационного захвата. Наиболее целесообразно использование радиационного захвата медленных нейтронов, интенсивность которых может быть очень высокой).

Обратное комптоновское рассеяние лазерных фотонов на электронах
Рис. 8. Геометрия комптоновского рассеяния фотона на движущемся электроне

Монохроматические -кванты более высокой энергии можно получить, используя обратный комптон-эффект [6, 7, 8].
Комптон-эффект на движущемся электроне обладает важной особенностью — в процессе рассеяния возникают фотоны значительно более жесткие, чем рассеиваемые. Так при рассеянии световых фотонов на релятивистских электронах рассеянные фотоны имеют энергию, сравнимую с энергией первичных электронов. Действительно, обобщая выражение (6) для случая, когда электроны движутся со скоростью v, можно получить

где Е0 — полная энергия электрона до взаимодействия, а смысл углов θ и φ поясняется рис. 8.
Таким образом, при фиксированных значениях Е0 и Eγ энергия рассеянного фотона полностью определяется геометрией эксперимента (углами и ).
Поскольку мы рассматриваем случай рассеяния фотонов не слишком высокой энергии на ультрарелятивистских электронах, то Е0 >> Еγ0 и третьим слагаемым в знаменателе выражения (7) можно пренебречь. В этом приближении

Отсюда видно, что энергия рассеянного фотона максимальна в случае, когда электрон и фотон до взаимодействия двигаются навстречу друг другу а рассеянный фотон двигается в том же направлении, что и пучок электронов (θ — φ = 0°). Тогда, учитывая также, что из выражения (8) получим

Из соотношения видно, что даже в случае использования источника фотонов малой энергии энергия рассеянных фотонов может быть сколь угодно большой за счет повышения энергии электронов. Это открывает возможность получения интенсивного пучка монохроматических высокой энергии за счет использования мощных лазеров. Действительно, при рассеянии фотонов рубинового лазера Еγ0 на электроне с энергией 6 ГэВ Eγ
Энергию рассеянных фотонов можно варьировать либо изменением энергий Е0 и Еγ0, либо изменением угла наблюдения — φ. С увеличением Е0 и Еγmax растет очень быстро. При

Таблица 3. Зависимость энергии фотонов обратного комптоновского рассеяния от энергии электронов (рубиновый лазер).
Е0 1 ГэВ 6 ГэВ 40 ГэВ 500 ГэВ
Еγmax 28 МэВ 848 МэВ 20 ГэВ 497 ГэВ

Энергетическое разрешение пучка рассеянных фотонов зависит от степени их коллимации, т. е. разброса в угле Рассмотрим случай, когда фотон после рассеяния назад летит под малым углом относительно направления движения первичного пучка электронов и Из соотношения (8) с учетом того, что получаем

где Еγmax определяется соотношением (9).
Если осуществляется коллимация рассеянных назад фотонов в пределах угла ± относительно направления движения первичного пучка электронов, то из (10) следует, что минимальная энергия рассеянного фотона определяется соотношением

(максимальная энергия рассеянного фотона дается формулой (9)). Отсюда следует, что для оценки энергетического разрешения пучка рассеянных назад фотонов можно использовать выражение

Полагая = 10 -5 рад, Еγ0 = 1.78 эВ и Е0 = 8 ГэВ, получаем Еγmax = 1.44 ГэВ и энергетическое разрешение около 2%. С ростом Е0 энергетическое разрешение при том же угле коллимации ухудшается. Так, при Е0 = 16 ГэВ Еγmax оно равно 6.5%.
Интенсивность пучка монохроматических фотонов, получаемых с помощью обратного комптон-эффекта, определяется как интенсивностью лазерного излучения, так и интенсивностью электронного пучка. Число фотонов, излучаемое мощными лазерами, достигает 10 20 в импульсе при длительности импульса Рассеяние такого числа фотонов на электронном сгустке такой же длительности с числом электронов позволит получить интенсивность монохроматических фотонов до 10 7 фотон/с при энергетическом разрешении около 5%.
Для получения комптоновских пучков целесообразно использовать электронные накопители с током в несколько сотен миллиампер.
Метод обратного рассеяния был предложен в 1963 г. Первая установка, на которой начались ядернофизические исследования была создана во Фраскати (Ladone). С 1994 г. в Новосибирске ведутся исследования на установках РОКК (Рассеянные Обратные Комптоновские Кванты). В настоящее время на комптоновсих пучках ведутся работы также в Брукхейвене на установке LEGS (Laser Electron Gamma Source), в Гренобле — GRAAL (GRenoble Accelerateur Anneau Laser), в Японии — LEPS (Laser Electron Photon Source). В табл. 4 приведены основные параметры установок с пучками обратных комптоновских фотонов.

Таблица 4. Параметры установок с пучками обратных комптоновских фотонов
Установка Ladone Taladone РОКК LEGS GRAAL LEPS
1 2
Накопитель Adone
(Фаскати)
ВЭПП-4,3,4М
(Новосибирск)
NSLS
(Брукхейвен)
ESRF
(Гренобль)
SPring-8
(Осака)
Энергия электронов, ГэВ 1.5 1.5 1.8-5.5 0.35-2.0 1.4-5.3 2.5 6.04 8.0
Ток электронов, А 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.2
Энергия лазерных фотонов, эВ 2.45 2.45 2.34-2.41 2.41-2.53 1.17-3.51 3.53 3.53 3.5
Энергия комптоновских квантов, МэВ 5-80 35-80 100-960 140-220 100-1200 180-320 550-1470 150-2400
Разрешение по энергии (FWHM), МэВ 0.07-8 4-2 1.5-2 4 6 16 30
Интенсивность гамма-квантов, с -1 10 5 5 . 10 5 2 . 10 5 2 . 10 6 2 . 10 6 4 . 10 5 2 . 10 6 10 7

Видно, что в этих установках перекрывается широкий диапазон энергий. Интенсивность пучка не превышает 10 7 с -1 . Ограничение по интенсивности связано с выбиванием лазерным пучком электронов с орбиты накопителя. Повышения интенсивности можно достичь, используя длинноволновые лазеры, когда потери энергии электронов на излучение гамма-квантов сравнительно невелики и электроны не теряются в накопителе, а возвращаются на равновесную орбиту.
Для получения высокой монохроматичности пучка небольших энергий Еγ используется коллимация пучка. Однако с увеличением энергии требуемый диаметр коллиматора становится слишком малы, поэтому дополнительно применяется система меченных фотонов.
Для примера на рис. 9 показана схема установки РОКК-2.

Рис. 9. Cхема установки РОКК-2 на накопителе ВЭПП-3.
  • при довольно высокой интенсивности удается получить хорошую монохроматичность;
  • фон тормозных низкоэнергетических фотонов, который в данном случае возникает только на остаточном газе вакуумной системы накопителя очень мал;
  • можно плавно менять верхнюю границу комптоновского спектра, изменяя начальную энергию электронов;
  • интенсивность пучка гамма-квантов слабо зависит от энергии электронов;
  • можно получать гамма-кванты с линейной или циркулярной поляризацией, степень которой близка к 100%, поляризацией пучка легко управлять, изменяя поляризацию лазерных фотонов.
Квазимонохроматическое излучение фотонов из ориентированных монокристаллов

Спектр когерентного излучения из ориентированного кристалла, облучаемого электронами, кроме тормозной компоненты, один из которых (при меньшей энергии) имеет максимальную интенсивность. Метод был реализован во Фраскатти и Харькове. Обычно используются тонкие монокристаллы алмаза. Настройка по энергии осуществляется вращением кристалла относительно направления падающего пучка. Во Фраскати при энергии электронов 1 ГэВ диапазон энергий гамма-квантов составлял 100-550 МэВ. Как во Фраскати, так и в Харькове были получены интенсивности ~10 10 c -1 при степени монохроматичности 10%.

Литература
  1. Б.С. Ишханов, И.М. Капитонов. Взаимодействие электромагнитного излучения с атомными ядрами. Изд. МГУ, 1979.
  2. В книге В.Г. Недорезов, А.Н. Мушкаренков. Электромагнитные взаимодействия ядер главы 5 и 6.
  3. S.C. Fultz, R.L. Bramblett, J.T. Caldwell, and N.A. Kerr. Photoneutron Cross-Section Measurements on Gold Using nearly Monochromatic Photons. — Phys. Rev. 127, 1273–1279 (1962).
  4. F.D. Seward, C.R. Hatcher, and S.C. Fultz. Measurement of the Annihilation-in-Flight Cross Section at 0° for 8.5-Mev Positrons. — Phys. Rev. 121, 605–609 (1961)
  5. В.В. Варламов, Б.С. Ишханов, Д.С. Руденко, М.Е. Степанов. Структура гигантского дипольного резонанса в экспериментах на пучках квазимонохроматических фотонов. — Препринт НИИЯФ МГУ 2002-19/703.
  6. S.C. Fultz, R.L. Bramblett, J.T. Caldwell, and N.A. Kerr. Photoneutron Cross-Section Measurements on Gold Using nearly Monochromatic Photons.- Phys. Rev. 127, 1273–1279 (1962).
  7. Richard H. Milburn. Electron Scattering by an Intense Polarized Photon Field. — Phys. Rev. Lett. 10, 75–77 (1963)
  8. В.Г.Недорезов, А.А.Туринге, Ю.М.Шатунов. Фотоядерные эксперименты на пучках гамма-квантов, получаемых методом обратного комптоновского рассеяния. — УФН 174, 4 (2004) 353 – 370.
  9. В.Г. Недорезов, Ю.Н. Ранюк. Фотоделение ядер за гигантским резонансом. Киев, Наукова думка (1989).

Что обеспечивает энергия гамма квантов

Планы развития ядерной энергетики в России предусматривают значительное увеличение числа атомных станций. Получат дальнейшее развитие реакторы на быстрых нейтронах и исследования в области термоядерного синтеза. Чтобы успешно реализовать эти планы, необходимо развивать ядерно-физическое приборостроение и, в первую очередь, создать новое поколение спектрометрической и дозиметрической аппаратуры. Авторы предлагают новый подход к созданию дозиметрических приборов, основанный на цифровых методах регистрации и обработки сигналов детекторов ионизирующих излучений. Применение цифровых методов должно существенно расширить возможности и повысить точность дозиметрической аппаратуры. Уже разработан и успешно прошел испытания прибор, в котором реализован такой подход.

Задача радиационного контроля заключается в измерении спектра нейтронов и гамма-квантов, из которых состоит поток ионизирующего излучения, а также в определении эквивалентной дозы и мощности эквивалентной дозы для каждого вида частиц. Сложность этой задачи связана, в частности, с тем, что в потоке ионизирующего излучения обычно присутствуют одновременно и нейтроны, и гамма-кванты – такие потоки называют смешанными полями. Сигналы детекторов излучения, вызванные различными типами частиц в смешанных полях, часто трудно различить.
Решить эту задачу можно на основе цифровых методов регистрации и обработки информации. Цифровые методы обработки сигналов детекторов ионизирующего излучения начали разрабатывать уже давно [1]. Однако только в последнее время, с появлением высокопроизводительных электронных устройств – аналого-цифровых преобразователей (АЦП), программируемых логических интегральных схем (ПЛИС), микропроцессоров, стало возможным эффективное применение этих методов в устройствах измерения сигналов.

Гамма-излучение Солнца удивило астрономов

Ученые из США и Израиля обнаружили, что интенсивность гамма-излучения Солнца зависит от его активности и положения источника на поверхности, что противоречит всем существующим теоретическим моделям. Для этого исследователи проанализировали данные космического гамма-телескопа «Ферми», собранные в 2008–2018 годах. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org. Расширенная версия работы опубликована в Physical Review D (препринт).

Исследование: опенсорс в России.

Несмотря на то, что бо́льшая часть излучения Солнца приходится на видимую (44 процента) и инфракрасную (48 процентов) области спектра, наша звезда также является ярким источником гамма-лучей. Энергия фотонов гамма-излучения (гамма-квантов) превышает 100 килоэлектронвольт, что примерно в сто тысяч раз больше энергии фотонов видимого света. В настоящее время ученые рассматривают два принципиально разных механизма образования таких высокоэнергетических фотонов. С одной стороны, фотоны могут возникать в солнечном гало за счет обратного комптоновского рассеяния на электронах космических лучей. Этот эффект довольно хорошо изучен на практике и в теории; в то же время, он работает только во время солнечных вспышек и не позволяет получить энергию более четырех гигаэлектронвольт.

С другой стороны, гамма-кванты могут рождаться внутри Солнца, когда разогнанные до околосветовых скоростей протоны космических лучей врезаются в молекулы солнечного газа. Этот процесс не привязан к солнечным вспышкам и позволяет получить фотоны c энергиями порядка 100 гигаэлектронвольт. Впрочем, ученые до сих пор плохо понимают физику этого процесса. Единственная теоретическая модель, которая объясняет излучение гамма-квантов солнечным диском, — модель SSG (Seckel, Stanev & Gaisser), — была разработана в 1991 году и плохо согласуется с данными наблюдений.

В 2014 году группа ученых под руководством Кенни Нг (Kenny Ng) проанализировала данные космического телескопа «Ферми», наблюдавшего за Солнцем в течение шести лет, и обнаружила у солнечного гамма-излучения несколько свойств, которые нельзя объяснить в рамках модели SSG. Во-первых, интенсивность излучения солнечного диска более чем в 50 раз превышала интенсивность излучения короны (на энергии порядка 10 гигаэлектронвольт). Во-вторых, энергия фотонов достигала 100 гигаэлектронвольт. В-третьих, интенсивность гамма-излучения оказалась отрицательно скоррелирована с солнечной активностью — другими словами, поток гамма-квантов был максимален, когда интенсивность солнечных вспышек и число солнечных пятен были минимальны. Модель SSG предсказывает гораздо меньшую интенсивность излучения, а также не может объяснить сезонные колебания интенсивности. К сожалению, собранных данных оказалось недостаточно, чтобы разработать корректную теорию, а потому ученые продолжили наблюдения.

Теперь исследователи представили результаты аналогичного анализа — однако на этот раз наблюдения покрывали практически весь 11-летний цикл солнечной активности (с 2008 по 2018 год) и были более качественными (то есть имели большее пространственное и энергетическое разрешение) за счет изменения алгоритма обработки данных. Это позволило ученым выделить еще несколько особенностей солнечного гамма-излучения.

Оказалось, что интенсивность излучения зависит не только от фазы цикла, но и от положения точки на поверхности Солнца — иначе говоря, в излучении можно выделить полярную и экваториальную компоненту, которые по-разному изменяются со временем. Полярная компонента практически постоянна в ходе солнечного цикла, а ее спектр резко обрывается после 100 гигаэлектронвольт. В то же время, экваториальная компонента резко возрастает в минимумах солнечной активности (в данном случае, в 2009 году) и пренебрежимо мала в остальные промежутки времени, а ее спектр простирается вплоть до 200 гигаэлектронвольт. Суммарно за весь период наблюдений астрономы зарегистрировали девять фотонов с энергиями более 100 гигаэлектронвольт — все они пришли из экваториальных областей, причем восемь из них были излучены в 2009 году (предыдущий минимум) и еще один в начале 2018 года (начало нового минимума). Кроме того, 13 декабря 2008 года исследователи зафиксировали одно «сдвоенное» событие — две практически одновременные вспышки с энергией более 100 гигаэлектронвольт (вспышки были разделены временны́м промежутком около 3,5 часов). Ученые отмечают, что эти вспышки могут быть связаны с корональным выбросом массы, который начался 12 декабря.

Разумеется, объяснить эти зависимости в рамках модели SSG нельзя, поскольку она предсказывает, что интенсивность излучения не зависит от времени и положения точки на поверхности Солнца. Поэтому ученые рассмотрели несколько альтернативных моделей — например, фокусировку или захват космических лучей магнитными полями Солнца — но ни одна из них так и не смогла воспроизвести наблюдаемые зависимости. Тем не менее, авторы статьи продолжают наблюдать за Солнцем и надеются, что в будущем корректная модель все-таки будет разработана.

С тех пор, как в 2008 году космический телескоп «Ферми» был запущен на орбиту, он успел сделать несколько крупных открытий. Например, в ноябре 2015 года телескоп обнаружил самый мощный гамма-пульсар, светимость которого в двадцать раз превышала светимость предыдущего рекордсмена. В июне 2016 он зафиксировал гамма-всплеск, полная энергия которого эквивалентна массе полной аннигиляции вещества Солнца (~2,5×10 54 эрг). В октябре 2017 «Ферми» впервые в истории зарегистрировал гамма-излучение, пришедшее практически одновременно с гравитационными волнами от сливающихся нейтронных звезд. Кроме того, с помощью телескопа ученым удалось увидеть вспышку на обратной стороне Солнца и показать, что темная материя не причастна к избытку гамма-излучения, исходящего из центра Млечного пути. Подробнее про работу телескопа «Ферми» можно прочитать в статьях астрофизика Бориса Штерна, приуроченных к десятилетию миссии [1,2].

Поскольку космические лучи поглощаются веществом Солнца, в окрестности звезды их интенсивность резко падает — получается, будто Солнце отбрасывает характерную «тень» в свете гамма-излучения. Измеряя, как эта тень смещается в течение года, в январе этого года группа The Tibet ASγ оценила величину межпланетного магнитного поля и показала, что результаты наблюдений почти в полтора раза расходятся с теорией потенциального магнитного поля. Это указывает на то, что некоторые приближения, необходимые для работы теории, на практике не выполняются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *