Система стандартов безопасности труда: электробезопасность, защитное заземление, зануление. ГОСТ 12.1.030-81
- РАЗРАБОТАН И ВНЕСЕН Министерством монтажных и специальных строительных работ СССР
РАЗРАБОТЧИКИ:
Р.Н. Карякин, д-р техн. наук; В.А. Антонов, канд. техн. наук (руководители темы); Л.К. Коновалова; В.К. Добрынин; В.И. Солнцев; М.П. Ратнер, канд. техн. наук; В.П. Коровин; А.И. Кустова; В.И. Сыроватка, д-р техн. наук; А.И. Якобс, д-р техн. наук; В.И. Бочаров, канд. техн. наук; В.Н. Ардасенов, канд. техн. наук - УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.05.81 № 2404
- ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка | Номер пункта |
ГОСТ 12.1.013-78 | 1.3 |
Настоящий стандарт распространяется на защитное заземление и зануление электроустановок постоянного и переменного тока частотой до 400 Гц и устанавливает требования по обеспечению электробезопасности с помощью защитного заземления, зануления.
Стандарт не распространяется на защитное заземление, зануление электроустановок, применяемых во взрывоопасных зонах, на электрифицированном транспорте, судах, в металлических резервуарах, под водой, под землей и для медицинской техники.
Термины, используемые в стандарте, и их пояснения, приведены в
приложении 1.
Стандарт соответствует СТ СЭВ 3230-81 в части защитного заземления.
(Измененная редакция, Изм. № 1).
1. Общие положения
1.1. Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
1.1.1. Защитное заземление следует выполнять преднамеренным электрическим соединением металлических частей электроустановок с «землей» или ее эквивалентом.
1.1.2. Зануление следует выполнять электрическим соединением металлических частей электроустановок с заземленной точкой источника питания электроэнергией при помощи нулевого защитного проводника.
1.2. Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
1.3. Защитное заземление или зануление электроустановок следует выполнять:
при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех случаях;
при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.
1.4. В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители.
При использовании железобетонных фундаментов промышленных зданий и сооружений в качестве естественных заземлителей и обеспечении допустимых напряжений прикосновения не требуется сооружение искусственных заземлителей, прокладка выравнивающих полос снаружи зданий и выполнение магистральных проводников заземления внутри здания. Металлические и железобетонные конструкции при использовании их в качестве заземляющих устройств должны образовывать непрерывную электрическую цепь по металлу, а в железобетонных конструкциях должны предусматриваться закладные детали для присоединения электрического и технологического оборудования (см. приложения 2, 3 и 4).
1.5. Допустимые напряжения прикосновения и сопротивления заземляющих устройств должны быть обеспечены в любое время года.
1.6. Заземляющее устройство, используемое для заземления электроустановок одного или различных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок.
1.7. В качестве заземляющих и нулевых защитных проводников следует использовать специально предназначенные для этой цели проводники, а также металлические строительные, производственные и электромонтажные конструкции. В качестве нулевых защитных проводников в первую очередь должны использоваться нулевые рабочие проводники. Для переносных однофазных приемников электрической энергии, светильников при вводе в них открытых незащищенных проводов, приемников электрической энергии постоянного тока указанной нормы в качестве заземляющих и нулевых защитных проводников следует использовать только предназначенные для этой цели проводники.
(Измененная редакция, Изм. № 1).
1.8. Материал, конструкция и размеры заземлителей, заземляющих и нулевых защитных проводников должны обеспечивать устойчивость к механическим, химическим и термическим воздействиям на весь период эксплуатации.
1.9. Для выравнивания потенциалов металлические строительные и производственные конструкции должны быть присоединены к сети заземления или зануления. При этом естественные контакты в сочленениях являются достаточными.
2. ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ОТ 110 ДО 750 КВ
2.1. В электроустановках напряжением от 110 до 750 кВ должно быть выполнено защитное заземление.
2.2. Заземляющие устройства следует выполнять по нормам на напряжение прикосновения или по нормам на их сопротивление.
Заземляющее устройство, которое выполняют по нормам на сопротивление, должно иметь в любое время года сопротивление не более 0,5 Ом. При удельном сопротивлении «земли» ρ, большем 500 Ом·м, допускается повышать сопротивление заземляющего устройства в зависимости от ρ.
2.3. Напряжение на заземляющем устройстве при стекании с него тока замыкания на «землю» не должно превышать 10 кВ.
Напряжение выше 10 кВ допускается на заземляющих устройствах, с которых исключен вынос потенциалов за пределы зданий и внешних ограждений электроустановки.
При напряжениях на заземляющем устройстве выше 5 кВ должны предусматриваться меры по защите изоляции отходящих кабелей связи и телемеханики.
2.4. В целях выравнивания потенциала на территории, занятой электрооборудованием, должны быть проложены продольные и поперечные горизонтальные элементы заземлителя и соединены сваркой между собой, а также с вертикальными элементами заземлителя.
3. ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ВЫШЕ 1000 В В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ
3.1. В электроустановках напряжением выше 1000 В в сети с изолированной нейтралью должно быть выполнено защитное заземление, при этом рекомендуется предусматривать устройства автоматического отыскания замыкания на «землю». Защиту от замыканий на «землю» рекомендуется устанавливать с действием на отключение (по всей электрически связанной сети), если это необходимо по условиям безопасности.
3.2. Наибольшее сопротивление заземляющего устройства R в Ом не должно быть более
где I — расчетная сила тока заземления на землю, А.
При использовании заземляющего устройства одновременно для электроустановок напряжением до 1000 В
Расчетная сила тока замыкания на землю должна быть определена для той из возможных в эксплуатации схемы сети, при которой сила токов замыкания на землю имеет наибольшее значение.
3.3. При удельном сопротивлении земли ρ, большем 500 Ом·м, допускается вводить на указанные значения сопротивлений заземляющего устройства повышающие коэффициенты, зависящие от ρ.
4. ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ДО 1000 В В СЕТИ С ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ
4.1. В стационарных электроустановках трехфазного тока в сети с заземленной нейтралью или заземленным выводом однофазного источника питания электроэнергией, а также с заземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление.
4.2. При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя.
4.3. В цепи нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей.
В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение разъединительных приспособлений, которые одновременно с отключением нулевых рабочих проводников отключают также все проводники, находящиеся под напряжением.
4.4. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов (трансформаторов) или выводы однофазного источника питания электроэнергией, с учетом естественных заземлителей и повторных заземлителей нулевого провода должно быть не более 2,4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.
При удельном электрическом сопротивлении «земли» ρ выше 100 Ом·м допускается увеличение указанной нормы в ρ/100 раз.
4.5. На воздушных линиях электропередачи зануление следует осуществлять нулевым рабочим проводом, проложенным на тех же опорах, что и фазные провода.
5. ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ДО 1000 В В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ
5.1. В электроустановках переменного тока в сетях с изолированной нейтралью или изолированными выводами однофазного источника питания электроэнергией защитное заземление должно быть выполнено в сочетании с контролем сопротивления изоляции.
5.2. Сопротивление заземляющего устройства в стационарных сетях должно быть не более 10 Ом. При удельном сопротивлении земли, большем 500 Ом·м, допускается вводить повышающие коэффициенты, зависящие от ρ.
6. ПЕРЕДВИЖНЫЕ ЭЛЕКТРОУСТАНОВКИ И РУЧНЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ КЛАССА I В СЕТЯХ НАПРЯЖЕНИЕМ ДО 1000 В
6.1. Режим нейтрали и защитные меры передвижных источников питания электроэнергией, используемых для питания стационарных приемников электрической энергии, должны соответствовать режиму нейтрали и защитным мерам, принятым в сетях стационарных приемников электрической энергии.
6.2. При питании передвижных приемников электрической энергии и ручных электрических машин класса I от стационарных сетей с заземленной нейтралью или от передвижных электроустановок с заземленной нейтралью зануление следует выполнять в сочетании с защитным отключением.
Допускается выполнять зануление — для ручных электрических машин класса I; зануление или зануление в сочетании с повторным заземлением — для передвижных приемников электрической энергии.
6.3. При питании передвижных приемников электрической энергии и ручных электрических машин класса I от стационарной сети или передвижного источника питания электроэнергией, имеющих изолированную нейтраль и контроль сопротивления изоляции, защитное заземление должно применяться в сочетании с металлической связью корпусов электрооборудования или защитным отключением.
6.4. Сопротивление заземляющего устройства в передвижных электроустановках с изолированной нейтралью при питании от передвижных источников электроэнергии определяют по значениям допустимых напряжений прикосновения при однополюсном замыкании на корпус либо устанавливают в соответствии с требованиями нормативной документации.
(Измененная редакция, Изм. № 1).
6.5. Защитное заземление передвижного источника питания электроэнергией с изолированной нейтралью и постоянным контролем сопротивления изоляции допускается не выполнять:
если расчетное сопротивление заземляющего устройства больше сопротивления заземляющего устройства рабочего заземления прибора постоянного контроля сопротивления изоляции;
если передвижной источник питания электроэнергией и приемники электрической энергии расположены непосредственно на передвижном механизме, их корпуса соединены металлической связью и источник не питает другие приемники электрической энергии вне этого механизма;
если передвижной источник питания электроэнергией предназначен для питания конкретных приемников электрической энергии, их корпуса соединены металлической связью, а их число и длина кабельной сети определяются либо величиной допустимого напряжения прикосновений при однополюсном замыкании на корпус, либо установлены нормативно-технической документацией.
6.6. В передвижных электроустановках с источником питания электроэнергией и приемниками электрической энергии, расположенными на общей металлической раме передвижного механизма, и не имеющих приемников электрической энергии вне этого механизма, допускается применять в качестве единственной защитной меры металлическую связь корпусов оборудования и нейтрали источника питания электроэнергией с металлической рамой передвижного механизма.
7. КОНТРОЛЬ УСТРОЙСТВ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ, ЗАНУЛЕНИЯ
7.1. Соответствие устройств защитного заземления или зануления требованиям настоящего стандарта должно устанавливаться при приемосдаточных испытаниях электроустановок после их монтажа на месте эксплуатации по «Правилам устройства электроустановок», утвержденным Госэнергонадзором СССР, а также периодически в процессе эксплуатации указанных устройств по «Правилам технической эксплуатации электроустановок потребителей» и «Правилам техники безопасности при эксплуатации электроустановок потребителей», утвержденным Госэнергонадзором СССР.
ПРИЛОЖЕНИЕ 1
(справочное)
ТЕРМИНЫ И ПОЯСНЕНИЯ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ
Проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении с землей или ее эквивалентом
Заземлитель, в качестве которого используют электропроводящие части строительных и производственных конструкций и коммуникаций
Проводник, соединяющий заземляемые части с заземлителем
Совокупность конструктивно объединенных заземляющих проводников и заземлителя
Заземляющий (нулевой защитный) проводник с двумя или более ответвлениями
Нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление
Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление
ОЦЕНКА ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ ФУНДАМЕНТОВ ПРОМЫШЛЕННЫХ ЗДАНИЙ В КАЧЕСТВЕ ЗАЗЕМЛИТЕЛЕЙ
При использовании железобетонных фундаментов промышленных зданий в качестве заземлителей сопротивление растеканию заземляющего устройства R в Ом должно оцениваться по формуле
где S — площадь, ограниченная периметром здания, м 2 ;
ρЭ — удельное эквивалентное электрическое сопротивление земли, Ом⋅м.
Для расчета ρЭ в Ом⋅м следует использовать формулу
где ρ1 — удельное электрическое сопротивление верхнего слоя земли, Ом⋅м;
ρ2 — удельное электрическое сопротивление нижнего слоя, Ом⋅м;
h1 — мощность (толщина) верхнего слоя земли, м;
α, β — безразмерные коэффициенты, зависящие от соотношения удельных электрических сопротивлений слоев земли.
Пусть ρ1=500 Ом⋅м; ρ2=130 Ом⋅м; h=3,7 м; =55 мм.
Тогда в соответствии с формулой (2) получим
Под верхним слоем следует понимать слой земли, удельное сопротивление которого ρ1 более чем в 2 раза отличается от удельного электрического сопротивления нижнего слоя ρ2.
В электроустановках напряжением от 110 до 750 кВ не требуется прокладка выравнивающих проводников, в том числе у входов и въездов, кроме мест расположения заземления нейтралей силовых трансформаторов, короткозамыкателей, вентильных разрядников и молниеотводов, если выполняется условие
где IК.З — расчетная сила тока однофазного замыкания, стекающего в «землю» с фундаментов здания, кА.
(Измененная редакция, Изм. № 1).
ПРИЛОЖЕНИЕ 3
(справочное)
СОЕДИНЕНИЕ АРМАТУРЫ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
1 — молниеприемная сетка; 2 — токоотвод; 3 — арматура колонны;
4 — заземляющая перемычка; 5 — арматура фундамента
ПРИЛОЖЕНИЕ 4
(справочное)
СОЕДИНЕНИЕ МЕТАЛЛИЧЕСКОЙ КОЛОННЫ С АРМАТУРОЙ ЖЕЛЕЗОБЕТОННОГО ФУНДАМЕНТА
1 — арматура подошвы; 2 — арматура фундамента; 3 — фундамент;
4 — фундаментные болты (не менее двух), соединенные с арматурой фундамента;
5 — стальная колонна; 6 — пластины для приварки проводников заземления
Зануление: что собой представляет, особенности применения в электрике
Любая эксплуатируема система снабжения электричеством жилых домов, дач, коттеджей должна также гарантировать безопасность людей и пользователей в процессе работы с электрическим оборудованием, которое подключено к сети. Для этого в составе современных систем предусмотрена специализированная конструкция в виде заземляющего устройства. Благодаря его использованию, при становлении аварийных ситуаций, происходит снижение высокого потенциала до безопасных значений. Если условия, необходимые для получения заземляющего эффекта, отсутствуют, рекомендуется применять защитное зануление. В профессиональных кругах оно рассматривается в качестве заземления на ноль.
Занулением является система безопасности, предназначающаяся для защиты электрического оборудования при попадании на его корпус опасного напряжения. Такой способ защиты является довольно актуальным для квартир и домов, где невозможно обустроить полноценную систему заземления.
Отличием зануления от заземления является принцип работы системы, а именно: при заземлении ток КС уходит в землю. В то время как для зануления используется отдельный проводник, соединенный с фазой ноль обслуживающей подстанции. Также это может быть специальное устройство защиты, срабатывающее при малейших утечках электрического тока.
В то же время, цель зануления аналогична системе заземления – защита людей от возможных поражений током. В случае, когда возникает короткое замыкание, как правило, срабатывает система защиты. Следовательно, человек имеет все шансы остаться в живых и сберечь собственное здоровье. Согласно действующим нормативным документам и ПУЭ, скорость, с которой должны срабатывать защитные устройства регламентирована на значении не более 0.4 секунды.
Что представляет собой зануление
При обустройстве зануления электроприборов предполагается присоединение к их корпусу нейтрали. В результате такого действия, если случится пробой изоляции или попадание фазы на корпус, произойдет короткое замыкание. При исправной защите автоматика сработает мгновенно и питание электрического прибора сразу же прекратится. Так наиболее просто можно ответить на вопрос, как функционирует система зануления.
Несмотря на кажущуюся простоту зануления, специалисты не рекомендуют делать его самостоятельно, а обратиться за помощью к профессиональным электрикам, которые имеют четкое понимание того, какую работу им предстоит выполнить. В противном случае есть огромная опасность того, что какие-либо параметры будут просчитаны неправильно либо выбраны неподходящие устройства, кабель другого сечения. В таких ситуациях есть риск, что во время короткого замыкания произойдет возгорание электропроводки и другими плачевными последствиями.
Если необходимо проведение зануления, лучшим решением станет консультация в этом вопросе с квалифицированными специалистами или их выезд на объект для оценки ситуации.
Функции зануления
Фактически в системе зануления сочетаются функции сразу двух типов защитных систем: заземлительного контура и системы защитного отключения. Основными элементами зануления являются:
- Магистраль зануления – представляется в виде металлического проводника, который связывается с нейтральным проводом трансформаторной установки. К нему присоединяют элементы электрического оборудования, выполненные из металла. Все эти элементы должны быть обязательно изолированы от напряжений.
- Ответвления магистрали к электрическим устройствам – представляют собой металлические проводники, которые выполняют роль связующих элементов для электрического оборудования и устройств, которые нужно занулить с магистралью зануления.
- Аппарат для отключения – представляется коммутационным аппаратом, посредством которого выполняется присоединение электрического оборудования к питающей электросети. Аппарат реагирует на ток при однофазном замыкании на корпус электрических устройств и мгновенно отключает от сети аварийное (неисправное) оборудование.
- Повторные магистрали заземления – это связующие элементы, соединяющие магистраль с поверхностью земли посредством заземлителей. Такие элементы имеют сравнительно невысокое сопротивление и используется лишь на некоторых участках занулительных систем.
Основные отличия
Если рассматривать разницу между системой заземления и занулением, отличиями служат следующие особенности:
- Если необходимо заземление корпуса электрооборудования от нуля, для этого необходимо сооружение специального контура. В то же время, при обустройстве цепи зануления такая необходимость отпадает.
- Конструкция системы заземления предполагает наличие отдельного провода, который будет соединять устройство, находящееся под защитой, с ЗУ. В свою очередь, при занулении проводник прокладывается также из этой точки, но лишь до шины входа.
- Если происходит замыкание через ноль, для обеспечения безопасности данная фаза отключается от питающей электросети. В то время как при условии заземления происходит снижение опасного напряжения до минимальных значений.
Как правило, в многоквартирных жилых зданиях условий, необходимых для обустройства заземления нет. Поэтому в большинстве случаев зануление для городских квартир является единственно возможным вариантом электрозащиты, наряду с УЗO.
Что выбрать: зануление или заземление?
Зануление является более сложной системой, организация которой требует проведение множества сопутствующих расчетов. Даже малейшая ошибка может привести к серьезным проблемам. В этом контексте заземление отличается большей безопасностью. К тому же, организовать заземление можно и самостоятельно. Для этого нужно лишь подготовить металлопрокатные изделия – к примеру, уголок, и сварочную аппаратуру, чтобы выполнить соединение частей, проводящих ток.
Чтобы сделать зануление, при проведении расчетов, важно также обладать необходимым опытом и специализированными знаниями. В частности, если в распределительном электрощите обрывается нулевой проводник, прекращает работать вся система. В сравнении с заземлением, это также является одним из минусов зануления. Помимо этого, если такой обрыв все же произойдет, это чревато ударами током. При таких условиях система зануления считается довольно небезопасной.
Резюмируя все выше сказанной, можно сделать следующие выводы:
- Если в доме существует возможность обустройства заземляющего контура, то лучше организовать заземление, а не занулять все электрические устройства.
- Система заземления в сравнении с занулением отличается более высокой степенью безопасности.
- Чтобы сделать зануление, необходимо вызвать квалифицированного специалиста. Помимо всего, проводится осмотр и анализ общего состояния нулевых проводников. В случае выявления каких-либо неисправностей либо несоответствия параметров должна быть проведена замена поврежденного или не работающего проводника.
По факту, находясь непосредственно на объекте и оценивая на месте ситуацию, специалист решает, что лучше всего сделать – зануление или заземление. Если навыки работы с такими системами у мастера отсутствуют или их недостаточно, допущенные при монтаже ошибки могут привести к нежелательным последствиям.
Особенности организации защитного зануления
Открытие электрического тока ознаменовало новую эру в развитие человечества. В настоящее время невозможно представить комфортное существование человека без этого энергоносителя. Без электричества невозможно представить работу промышленных предприятий, строительных организаций, транспорта и так далее. Да и просто жизнь людей скатилась бы без него к средневековому уровню. Но этот вид энергии является надежным слугой человечества, только в том случае, если она будет находиться под неусыпным контролем. Но если этот контроль ослабить, то электричество станет неуправляемой стихией и может нанести огромный вред как человеку, так и материальным ценностям.
Движение электронов в электрической сети идет по пути минимального сопротивления и если не предпринимать защитных мер, то электрический ток может нанести человеку серьезное поражение, вплоть до летального исхода. К тому же, в критических ситуациях электрическая энергия способна воспламенить горючие вещества, что неминуемо приведет к возникновению пожара. Чтобы избежать этих негативных последствий предпринимаются различные меры обеспечения безопасности: автоматические системы обесточивания сети, защитное зануление и заземление. В этой статье мы расскажем, что называется занулением и как такая защита функционирует.
Зануление и его особенности
Ответить на вопрос, что такое защитное зануление, довольно просто, но необходимо знать чем оно отличается от заземления электрооборудования. Точное понимание этих различий позволит избежать многих ошибок при монтаже бытовой техники, различных приборов, станков и другого оборудования, работающего на электрической энергии. Защитное зануление — это подключение металлических корпусов и других деталей промышленного оборудования и различной бытовой техники, которые в рабочем состоянии не должны находиться под сетевым напряжением, к нейтральному (нулевому) проводу системы подачи электроэнергии. Этот провод в какой-то точке должен быть наглухо заземлен.
Важно! Не путайте нейтральный (нулевой) защитный провод с нулевым проводом питающей сети. Это совершенно разные проводники. Для сетей с трехфазной подачей электроэнергии — это нейтральный провод, идущий от силового трансформаторной подстанции или устройства, генерирующего электрическую энергию, для однофазных сетей — это наглухо заземленный провод.
Для чего необходимо занулять некоторые типы бытового и промышленного оборудования? Все очень просто! Главной целью зануления является обеспечение защиты человека от поражения электрическим током в случае КЗ (короткого замыкания) фазы сети на корпус и другие токопроводящие части электрооборудования.
Принцип действия зануления
Принцип действия зануления заключается в следующем процессе. Допустим, фаза питающей сети попала на корпус электрооборудования, что часто происходит в результате пробоя изоляции или других форс-мажорных обстоятельствах. В этом случае, если токопроводящие части устройства имеют защитное зануление, возникает короткое замыкание, при этом величина электрического тока мгновенно достигает максимальных значений и срабатывает автоматическая защита или выгорает предохранитель. Бытовая техника или другое оборудование обесточивается, что защищает человека от поражения электричеством и препятствует возникновению других негативных последствий.
Для того чтобы зануление сработало, нейтральный проводник должен иметь очень низкое значение сопротивления электрическому току. Только в этом случае ток КЗ будет максимальным, что обеспечит срабатывание защитных систем сети. Благодаря тому, что нейтраль имеет полное заземление на генераторе или трансформаторе, защитное зануление обеспечивает очень низкое напряжение на корпусе электрооборудования при прикосновении к нему. По большому счету, защитное зануление — это одна из разновидностей заземления, выполненная с соблюдением определенных правил и норм.
Внимание! Простое заземление электрооборудования не всегда способно обеспечить срабатывание защитных систем сети, так как величины тока КЗ может не хватить для этого. Это значение должно быть максимальным!
Системы и схемы зануления
Существует несколько вариантов выполнения защиты электрооборудования путем зануления металлического корпуса устройства. В этой статье мы рассмотрим два следующих основных способа зануления любой техники, подключенных к трехфазной и однофазной сети подачи электроэнергии.
- Трехфазная сеть. Для такого подключения схема довольно проста и выполнить ее не составит труда любому человеку знакомому с основами электротехники. В этом варианте нулевой провод N и защитная линия PE объединены в одну общую шину под названием PEN. Такой метод зануления получил наименование системы TN-C. Для его реализации необходимо строго соблюдать повышенные требования к уравниванию электрических потенциалов, а также к площади сечения объединенного проводника PEN. Для сетей с подачей электроэнергии по однофазной схеме использование системы TN-C категорически запрещено правилами устройства электроустановок (ПУЭ).
- Однофазная сеть. Для реализации защитного зануления в однофазных сетях существует способ по системе TN-C-S. При этом методе проводник N объединяется с линией PE только на ограниченном участке сети подачи электроэнергии, начинающимся рядом с основным источником питания. Система TN-C-S хороша для однофазных сетей, но ее ни в коем случае нельзя применять при занулении электрооборудования, работающего в трехфазных сетях электрификации.
Любая система защитного зануления может быть использована только в сетях как однофазных, так и трехфазных, с переменным напряжением не более 1 кВ, к тому же сеть в обязательном порядке должна иметь наглухо заземленную нейтраль. После выполнения работ по защите электрооборудования необходимо выполнить проверку и расчет системы зануления, который следует доверить только специалисту, так как эта процедура предполагает использование специальных приборов. В результате произведенных замеров определяется сопротивление петли нейтраль-фаза, которое должно иметь минимальное значение.
После этого, согласно закону Ома, по которому I=U/R, вычисляется ток КЗ (короткого замыкания) при попадании фазы сети на металлический корпус прибора. Значение этого параметра должно быть на некоторую величину больше, чем порог срабатывания автоматических систем обесточивания электроразводки. В противном случае их нужно менять на устройства с меньшим значением порога срабатывания или выполнять мероприятия по снижению величины сопротивления петли нейтраль-фаза. При расчете тока КЗ следует применять увеличивающий коэффициент надежности Кн, который всегда больше единицы.
Особенности зануления в квартире
У потребителя часто возникает вопрос: что необходимо занулять в квартире, а чего делать не следует? Коротко ответим на этот вопрос. Сначала расскажем чего делать не следует. Зануление в квартире не рекомендуется использовать для изделий, которые заземлены через трубы. К ним относятся металлические ванны, умывальники, смесители и другие предметы, связанные с землей через стальные трубы. В случае зануления этих изделий можно получить поражение электрическим током при включении бытовой техники. Выравнивать потенциалы металлических предметов на кухне, в ванной и туалете следует используя заземление.
Все бытовые приборы в квартире необходимо занулять. В новых домах эта проблема, как правило, решена, так как нейтраль уже подведена к розеткам, а все современные бытовые приборы имеют вилку с заземляющим контактом. В старых домах электропроводка выполнена по двухпроводной схеме. В этом случае для зануления бытовой техники необходимо завести отдельный провод от квартирного электрического щитка, что позволит занулить оборудование через розетки.
Важно! Зануление бытовой техники в квартире необходимо выполнять с соблюдением правил электробезопасности. Работы следует проводить на полностью обесточенном оборудовании!
Когда следует использовать зануление, а когда заземление
В этой части статьи мы ответим на вопрос в чем разница между заземлением и занулением и в каком случае использовать тот или иной метод защиты человека от поражения электрическим током. Принцип действия защитного зануления похож на функциональные возможности заземления, но между ними есть существенная разница!
Обе системы предназначены для защиты человека от поражения электричеством. Разница между ними в том, что зануление мгновенно обесточивает оборудование, а заземление отводит опасный электрический ток в землю. Вот в этом и заключается вся разница! На ниже приведенной схеме наглядно показаны различия между этими двумя способами.
Какой же метод лучше использовать в каждом конкретном случае? Однозначно ответить на этот вопрос невозможно. Например, в многоэтажных домах создание заземляющего контура — это трудное и затратное мероприятие. Поэтому в большинстве квартир используется защитное зануление, подключаемое к бытовой технике через электрические розетки. В частном доме монтаж заземляющего контура не вызовет затруднений. Каждая из систем защиты следующие преимущества и недостатки.
- Заземление в частном доме можно сделать собственными руками, а для зануления необходимы познания в электротехнике, с проведением расчетов и выбора оптимального варианта подключения к нейтральному проводу системы электроснабжения. К тому же зануление перестает работать при обрыве нулевого провода.
- В многоэтажных домах устройство контура заземления является сложной задачей, так как необходимо будет выполнить комплекс монтажных работ высокой стоимости. Для квартир в основном используется принцип зануления бытовых приборов, хотя этому способу защиты человека от поражения электрическим током присущи определенные недостатки.
Исходя из всего вышесказанного следует сделать вывод, что для частного дома лучше выбирать заземление, а для квартиры зануление. Правда, в том случае если объект запитывается от однофазной двухпроводной линии, что характерно для дачных поселков, без контура заземления не обойтись!
Важно! Часто в специальной литературе можно встретить такой термин, как защитное заземление по системе TN-C-S и TN-C. Следует сказать, что это не прямое заземление через специально смонтированный контур, а все то же защитное зануление!
Заключение
Надеемся, что статья помогла вам понять, что такое зануление и заземление, как эти две системы защиты человека от поражения электрическим током работают и какую из них лучше использовать в частном доме, квартире или на даче!
Видео по теме
- Главная
- Электропроводка
- Заземление и защита
Общие определения защитных мер электробезопасности
Обратимся сразу к правилам устройства электроустановок (ПУЭ), которые разработаны и утверждены для отрасли Энергетики, руководствуясь правилами и соблюдая, не произойдет грубейших нарушений в эксплуатации электроустановки и не повлечет за собой несчастных случаев на производстве.
1.7.2. Электроустановки в отношении мер электробезопасности разделяются на:
Видим что существует разделение электроустановок на глухозаземленной и изолированной нейтрали а также распределение до 1кВ и выше 1кВ. В России именно такие электроустановки используются в большинстве, не берем во внимание сети на постоянном токе все это будет описано в следующих статьях. Сейчас цель, это защитные меры электробезопасности основные требования и определения.
1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности.
1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.
Обращаю внимание на: преднамеренное, в процессе электромонтажных работ выполняется заземление, начиная с внешнего контура заземление, затем в помещениях, к которым требования правил по внутреннему заземлению с монтажом (ШУП) шины уравнивания потенциалов. С последующем присоединением корпусов электроустановок. металлоконструкций, металлических изделий выходящих из зданий.
1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
1.7.10. Замыканием на землю называется случайное соединение находящихся под напряжением частей электроустановки с конструктивными частями, не изолированными от земли, или непосредственно с землей. Замыканием на корпус называется случайное соединение находящихся под напряжением частей электроустановки с их конструктивными частями, нормально не находящимися под напряжением.
1.7.11. Заземляющим устройством называется совокупность заземлителя и заземляющих проводников.
1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
1.7.13. Искусственным заземлителем называется заземлитель, специально выполняемый для целей заземления.
1.7.14. Естественным заземлителем называются находящиеся в соприкосновении с землей электропроводящие части
1.7.15. Магистралью заземления или зануления называется соответственно заземляющий или нулевой защитный проводник с двумя или более ответвлениями.
1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.
1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.
1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока.
Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников.
В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.
1.7.19. Зоной растекания называется область земли, в пределах которой возникает заметный градиент потенциала при стекании тока с заземлителя.
1.7.20. Зоной нулевого потенциала называется зона земли за пределами зоны растекания.
1.7.21. Напряжением на заземляющем устройстве называется напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземляющее устройство и зоной нулевого потенциала.
1.7.22. Напряжением относительно земли при замыкании на корпус называется напряжение между этим корпусом и зоной нулевого потенциала.
1.7.23. Напряжением прикосновения называется напряжение между двумя точками цепи тока замыкания на землю (на корпус) при одновременном прикосновении к ним человека.
1.7.24. Напряжением шага называется напряжение между двумя точками земли, обусловленное растеканием тока замыкания на землю, при одновременном касании их ногами человека.
1.7.25. Током замыкания на землю называется ток, стекающий в землю через место замыкания.
1.7.26. Сопротивлением заземляющего устройства называется отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.
1.7.27. Эквивалентным удельным сопротивлением земли с неоднородной структурой называется такое удельное сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.
Термин «удельное сопротивление», применяемый в настоящих Правилах, для земли с неоднородной структурой следует понимать как «эквивалентное удельное сопротивление».
1.7.28. Защитным отключением в электроустановках до 1 кВ называется автоматическое отключение всех фаз (полюсов) участка сети, обеспечивающее безопасные для человека сочетания тока и времени его прохождения при замыканиях на корпус или снижении уровня изоляции ниже определенного значения.
1.7.29. Двойной изоляцией электроприемника называется совокупность рабочей и защитной (дополнительной) изоляции, при которой доступные прикосновению части электроприемника не приобретают опасного напряжения при повреждении только рабочей или только защитной (дополнительной) изоляции.
1.7.30. Малым напряжением называется номинальное напряжение не более 42 В между фазами и по отношению к земле, применяемое в электрических установках для обеспечения электробезопасности.
1.7.31. Разделительным трансформатором называется трансформатор, предназначенный для отделения сети, питающей электроприемник, от первичной электрической сети, а также от сети заземления или зануления.
1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
1.7.13. Искусственным заземлителем называется заземлитель, специально выполняемый для целей заземления.
1.7.14. Естественным заземлителем называются находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий и сооружений производственного или иного назначения, используемые для целей заземления.
Итак мы видим: правила объясняют, что меры безопасности строго должны выполняться. Начиная с сетевого распределительного устройства, где обязан быть контур заземления и смонтированы аппараты защиты, далее передача электроэнергии независимо от напряжения по кабельным или воздушным линиям так же предусматривает заземление линий, при приеме электроэнергии на водно-распределительных устройствах обязан быть контур заземления. Подводим итог: Где течет электрический ток, там должны применить защитные меры во избежание поражения электрическим током. В последующих статьях более подробно опишу сети электроснабжения защитные меры электробезопасности и область применения.