Сопротивление тела человека — от чего зависит и как может изменяться
При попадании человека под электрическое напряжение, через его тело начинает течь электрический ток, и величина этого тока зависит не только от величины приложенного напряжения, но и от сопротивления тела человека. Между тем, сопротивление тела человека — величина отнюдь не постоянная, ее значение зависит от многих факторов: от состояния человека на момент контакта (психического и физического), от параметров замкнутой цепи, от внешних условий среды, в которой человек на момент удара находится.
Тело человека состоит из различных тканей, и каждый вид тканей обладает своим сопротивлением. Так например, сухожилия, кожа, жировая ткань, хрящи и кости имеют удельное сопротивление порядка 3 — 20 кОм/м. Кровь, мышцы, лимфа, головной и спинной мозг — всего от 0,5 до 1 Ом/м. Из всех этих тканей наибольшим сопротивлением отличается кожа, поэтому именно кожа в значительной степени определяет сопротивление человеческого тела электрическому току.
Человеческая кожа имеет сложную структуру. Ее наружный слой — эпидермис — включает в себя несколько структурных частей: наружный роговой слой, который не содержит ни нервов, ни кровеносных сосудов, от того и обладает наибольшим сопротивлением, и другие слои, сопротивление которых значительно меньше рогового слоя. Дальше идет дерма — внутренний слой, сопротивление которого также сильно меньше, а значит именно сопротивление рогового слоя имеет решающее значение в полном сопротивлении кожи.
На сопротивление кожи влияет ее состояние. Если кожа сухая и чистая, не имеет повреждений, то ее сопротивление лежит в пределах от 10 до 100 кОм. Если же на коже есть порезы, царапины, микротравмы, они способны сильно снизить сопротивление тела человека до сопротивления лишь внутренних тканей. Очевидно, наличие на коже вышеназванных повреждений делает поражение электрическим током более опасным. Загрязненная и влажная кожа также имеет сопротивление более низкое.
Общее сопротивление человеческого тела, попавшего под напряжение, можно представить состоящим из трех сопротивлений, включенных последовательно: два слоя эпидермиса и одно — сопротивление дермы и внутренних тканей. Таким образом, внутренние ткани служат вместе с приложенными электродами как бы обкладками конденсатора, а эпидермис — диэлектриком.
В результате, если снаружи к телу приложены электроды, то получается цепь из активного сопротивления внутренних тканей и почти емкостного сопротивления эпидермиса. То есть можно сказать, что речь идет о диэлектрической проницаемости от 100 до 200, и об удельном сопротивлении от 10 до 100 кОм/м в цепи, состоящей из конденсатора и резистора.
Внутренние ткани имеют сопротивление активное Rв с небольшой емкостной составляющей, которая почти не зависит ни от площади электродов, ни от частоты, и находится в пределах от 500 до 700 Ом.
Но оно зависит от протяженности и поперечного сечения участков тела, и от удельного сопротивления внутренних органов. То есть в эквивалентном виде общее сопротивление Zт тела человека можно представить так:
При малом сопротивлении тела человека емкостная составляющая утрачивает значение:
Итак, электрическое сопротивление тела человека зависит от следующих пяти факторов:
- От общего психологического и физиологического состояния (индивидуальные особенности);
- От пола — от толщины кожи (у мужчин сопротивление выше, чем у женщин);
- От возраста — от грубости кожи (у взрослых сопротивление выше, чем у детей);
- От внешних условий (температура, давление, влажность, плотность);
- От общего состояния кожи (раны, грязь, увлажненность и т. д.);
- От внешних раздражителей (внезапные удар, укол, свет или звук), способных снизить сопротивление на 20 — 50 % за несколько минут.
Легко видеть, что электрическое сопротивление человеческого тела не постоянно и не линейно, однако для расчетов его принимают равным 1 кОм. Тем не менее, сопротивление тела человека зависит и от приложенного напряжения, поскольку в момент поражения током может оказаться, что цепь включает в себя еще и поверхность пола, грунт, обувь, одежду и т. д. Ток тогда будет определять не только сопротивление собственно тела человека, но и схема его включения в цепь.
Двухфазное прикосновение
При двухфазном прикосновении человек стоит на изолированном основании, касаясь одновременно двух фаз трехфазной сети, либо двух проводников однофазной сети переменного или постоянного тока. В этом случае ток потечет через руки и через жизненно важные органы, что весьма опасно, и еще опаснее, если замыкание происходит по пути рука — голова. При таком прикосновении человек может попасть либо под линейное межфазное напряжение, либо под полное рабочее напряжение электроустановки.
Если человек прикоснулся открытыми частями тела, то сопротивление определяется сопротивлением тела, сопротивлением кожи, если же произошло соприкосновение с полюсами через одежду, то в схему добавляется последовательно сопротивление одежды.
Можно сравнить эти два варианта. Сопротивление сухой одежды — от 10 до 15 кОм, а для влажной — от 0,5 до 1,5 кОм. Очевидно, сопротивление одежды так или иначе ограничивает ток через тело человека, хотя и падает в 10 — 30 раз в случае если одежда влажная.
При сухой одежде удар ощутится в сильном дрожании от пальцев до запястья, это 20мА при 220 вольтах. Если же одежда сырая, то при 140мА руки можно будет лишь с определенными усилиями оторвать от мест контакта. Сопротивление обуви и пола здесь не учитываются, поскольку в цепь они не включены.
Однофазное или однополюсное прикосновение
Человек стоит на земле, и только одной частью тела прикоснулся к электроустановке под напряжением, причем потенциал электроустановки отличается от потенциала земли или другой опорной поверхности. В этом случае человек попадает под напряжение относительно земли, и ток через тело будет током замыкания на землю.
Путь тока по петле голова — ноги или рука — ноги, при том через жизненно важные органы. В цепь окажутся включены сопротивления: тела, одежды, обуви, опоры. Сопротивления обуви и опоры включены между собой параллельно.
В зависимости от материала подошвы, от того влажная ли она или сухая, сопротивление обуви будет разным. Немаловажную роль играет и материал пола (опорной поверхности):
- Влажная кожаная подошва обладает сопротивлением 500 Ом, сухая — 100 кОм;
- Влажная резиновая подошва — 1,5 кОм, сухая резиновая подошва — 500 кОм;
- Металлический пол — от 0 (сухой) до 10 Ом (влажный);
- Земля сухая — 20 кОм, влажная — 800 Ом;
- Бетон сухой — 2 МОм, влажный бетон — 900 Ом;
- Линолеум сухой — 1,5 МОм, линолеум влажный — 50 кОм;
- Камень сухой — 8,5 кОм, камень влажный — 5 кОм;
- Снег или лед — от 300 Ом до 2 МОм;
- Песок сухой — 8 кОм, песок влажный — 1,6 кОм;
- Чернозем сухой — 160 Ом, влажный чернозем — 50 Ом.
Как видно, сопротивления опоры и обуви играют важную роль, и часто во много раз превосходят сопротивление тела человека, особенно в сухом состоянии, что может порой спасти жизнь.
При прикосновении к корпусу установки, который по какой-то причине оказался под напряжением, если заземления нет, то весь ток пойдет через тело. Если заземление присутствует, то основная часть тока пойдет через землю, а через тело — лишь малая часть, это представляет меньшую опасность для жизни.
Шаговое напряжение
Если человек стоит на земле неподалеку от заземлителя, и по грунту протекает ток, то частично этот ток может потечь через ноги по телу человека — по петле нога — нога, то есть человек попадет под шаговое напряжение. Образуется последовательная цепь, состоящая из сопротивлений опоры, обуви и тела. Сопротивления обуви и опоры играют здесь решающую роль, и способны в сухом виде принять на себя большее напряжение, чем примет голое тело.
- Чем опасно самостоятельное выполнение заземления в квартире (переделка TN-C в TN-C-S)
- Люминесцентные лампы — от расцвета до заката
- Почему бьет током одежда, мебель, машина и окружающие предметы
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Интересные факты, Техника безопасности
Подписывайтесь на наш канал в Telegram: Домашняя электрика
Поделитесь этой статьей с друзьями:
Электрическое сопротивление человека. Сопротивление тела у людей.
Человеческое тело, как и любое другое тело живого организма, имеет свойство проводить через себя электрический ток. Разные живые ткани в организме имеют различную проводимость (сопротивление). К примеру — кожа, жировая ткань, кости – имеют большое сопротивление, а кровь, мышечная масса и особенно головной и спинной мозг – малое. Кожа имеет большое удельное электрическое сопротивление, что впоследствии и определяет фактическое сопротивление человеческого тела.
Кожа человека, как известно, имеет два слоя:
1» наружный слой кожи (также ещё называется эпидермис) состоит из несколько слоёв, самый верхний из которых называется роговым и представляет собой множество рядов отмерших и ороговевших клеток. В чистом и сухом виде этот слой можно характеризовать как диэлектрик (он имеет очень большое электрическое сопротивление). Следующий слой эпидермиса (носит название — ростковый) гораздо тоньше рогового и имеет значительно большую электрическую проводимость (меньшее сопротивление).
2» внутренний слой кожи (называется дерма) представляет собой живую ткань. Данный слой дермы имеет малое электрическое сопротивление.
Электрическое сопротивление обычного человека при условии, что кожа у него чистая, сухая и неповреждённая (измеренное напряжением 15-20 Вольт) лежит в пределах 3 — 100 кОм (1кОм = 1000 Ом), в некоторых случаях и более. Сопротивление тела человека, а именно проводимость между двух электродов, которые касаются поверхности кожи, можно рассматривать как 3 сопротивления включённых последовательно: наружные слои (эпидермиса) представляют собой первое сопротивление, и внутренние слои является вторым и третьим сопротивлением, включающим в себя сопротивления внутреннего слоя кожи и сопротивление внутренних тканей.
Наружное сопротивление человека обладает не только активным сопротивлением, а ещё и ёмкостным, поскольку в самом месте контактирования электродов с человеческим телом образовывается некое подобие конденсатора, в роли обкладок которого являются сами электроды и ткани тела человека, хорошо проводящие электрический ток, что находятся под наружным слоем кожи, ну, а диэлектриком (изолятором между обкладками) в данном случае будет выступать наружный слой кожи (эпидермис).
Ёмкостная составляющая, присутствующая в сопротивлении человека обуславливает влияние, как рода электрического тока, так и его частоты на общую величину сопротивления тела. При частоте 10 — 20 кГц и свыше можно утверждать, что поверхностный слой кожи почти полностью утрачивает своё сопротивление, и общее сопротивление человека в данном случае будет состоять лишь из внутреннего сопротивления тела (сопротивление дермы и внутренних тканей).
Общее состояние кожи в значительной мере оказывает влияние на величину электрического сопротивления человека. При повреждении рогового слоя кожи (царапины, порезы, ссадины и т.д.) происходит снижение сопротивления человека до величины, приближенного к значению внутреннего сопротивления, а это, естественно, повышает опасность поражения электрическим током. Подобное влияние может оказываться и в случае увлажнения кожи водой или потом.
При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. В действительности данное электрическое сопротивление есть величина непостоянная, что имеет нелинейную характеристику и зависит от дополнительных условий, в том числе от параметров электрической цепи, состояния кожи, состояния окружающей среды, физиологии человека и т.д.
Так как сопротивление кожи у одного и того же человека может быть неодинаковое в разных местах и частях тела, то, естественно, на его сопротивление сильно будет влиять конкретное место прикосновения электрических контактов, а также их общая площадь. Величина электрического тока и длительность воздействия на тело оказывают прямое влияние на полное сопротивление человека: с увеличением значения тока и времени его прохождения, сопротивление будет понижаться, потому что происходит местный нагрев участков кожи, а это, само собой, ведёт к расширению сосудов, тем самым усиливая снабжение данного участка тела кровью, увеличения его потоотделение. Увеличение напряжения, воздействующее на тело человека, вызывает понижение сопротивления кожи в 10-ки раз, следовательно, и общее сопротивление человека, снижается до предела 300 — 500 Ом. А это опасно.
P.S. Всякие случайности хороши в том случае, когда они имеют положительный характер. Случайный удар электрическим током нельзя отнести к таковым. Следовательно, будьте внимательны и осторожны при работе с электричеством.
Электрическое сопротивление тела человека
Значение тока через тело человека сильно влияет на тяжесть электротравм. В свою очередь, сам ток согласно закону Ома определяется сопротивлением тела человека и приложенным к нему напряжением, т.е. напряжением прикосновения.
Сопротивление тела человека является комплексной переменной величиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, окружающей среды, центральной нервной системы, физиологических факторов. Электрическое сопротивление различных тканей тела человека не одинаково: кожа, кости, сухожилия и хрящи имеют относительно большое сопротивление, а мышечная ткань, кровь, лимфа, пот и особенно нервные пути, спинной и головной мозг – малое сопротивление.
Электрическое сопротивление тела человека, т.е. сопротивление между двумя электродами, наложенными на поверхность тела, в основном определяется сопротивлением кожи. Кожа состоит из двух основных слоёв: наружного (эпидермис), и внутреннего (дерма). Эпидермис состоит из мёртвых ороговевших клеток, лишён кровеносных сосудов и нервов и поэтому является слоем неживой ткани. Толщина этого слоя 0,05 – 0,2 мм. В сухом и незагрязнённом состоянии его можно рассматривать как диэлектрик, обладающий большим удельным сопротивлением. Дерма состоит из волокон соединительной ткани. В этом слое находятся кровеносные и лимфатические сосуды, нервные окончания, корни волос, потовые и сальные железы. Дерма обладает малым сопротивлением току.
Полное сопротивление тела человека есть сумма сопротивлений тканей, расположенных на пути тока. Основным фактором, определяющим величину полного сопротивления, является состояние кожного покрова в цепи тока. При сухой, чистой и неповреждённой коже сопротивление тела человека, измеренное при напряжении до 15 В, составляет 3…100 кОм. Если на участке кожи, где прикладываются электроды, удалить эпидермис, сопротивление тела составит 500…700 Ом. Если под электродами полностью удалить кожу, то будет измерено сопротивление внутренних тканей, которое составит 300…500 Ом.
Электрическое сопротивление тела человека зависит от ряда факторов. Его могут снизить повреждения рогового слоя, увлажнение кожи, тепловое облучение, повышенная температура воздуха.
Сопротивление наружного слоя кожи Rн уменьшается с увеличением площади электродов и зависит от места их приложения, что объясняется различной толщиной эпидермиса, неравномерным распределением потовых желёз, неодинаковой степенью наполнения кровью сосудов кожи. Повышение напряжения, приложенного к телу человека, вызывает уменьшение его сопротивления, которое при напряжениях более 200 В соответствует сопротивлению внутренних тканей (Rвн).
При оценке опасности поражения электрическим током и расчёте защитных мер в электроустановках сопротивление тела человека (Rh)принимают равным 1 кОм.
Рис. Эквивалентная схема электрического сопротивления тела человека
На рис. 4.1 приведён упрощённый вариант эквивалентной схемы цепи протекания электрического тока через тело человека.
На рисунке обозначено: 1 – электроды; 2 – эпидермис; 3 – внутренние ткани и органы тела человека, включая дерму; Ih – ток, протекающий через тело человека; Uh – напряжение, приложенное к электродам; Rн – активная составляющая сопротивления наружного слоя кожи; Cн – ёмкость условного конденсатора, обклад ка ми которого являются электрод и хорошо проводящие ток ткани тела человека, расположен ные под эпидермисом, а диэлектриком – эпидермис; Rвн – активное сопротивление внутренних тканей, включая дерму.
Из схемы на рис. следует, что комплексное сопротивление тела человека определяется соотношением:
где Xн = 1/ jw Cн – величина ёмкостной составляющей сопротивления тела человека;
w=2p f , f – частота действующего тока.
Для практических применений используют модуль комплексного сопротивления тела человека:
Как зависит сопротивление тела человека от величины напряжения прикосновения
ЭЛЕКТРОБЕЗОПАСНОСТЬ
Законодательные и правовые акты в области электроснабжения
Структура и система организации электрохозяйства на предприятии
Правила безопасности при эксплуатации электроустановок Термины и определения, организационные и технические мероприятия, влияние электрического и магнитных полей, работа с электроинструментом, организация работ командированного персонала. Организация обучения и проверки знаний по нормам и правилам работы в электроустановках
Защитные средства
Плакаты и знаки безопасности
Оказание первой помощи пострадавшему от электротравмы
Заземление, зануление, УЗО. Опасность поражения электротоком в электроустановках. Напряжение шага.
Действие электрического тока на организм человека.
СОПРОТИВЛЕНИЕ ТЕЛА ЧЕЛОВЕКА. ВОЗДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО НАПРЯЖЕНИЯ. ЗАЩИТА ОТ ПРИКОСНОВЕНИЯ.
Защита от напряжения прикосновения на доступных частях аппаратуры. Классы медицинской аппаратуры.
Особенности эксплуатации отдельных видов аппаратуры. Объем и периодичность контроля.
Общее электрическое сопротивление тела между двумя электродами можно представить в виде двух частей существенно отличающихся друг от друга. Это сопротивление кожи и сопротивление внутренних тканей и органов. Сопротивление кожи значительно превосходит сопротивление других тканей. Это объясняется наличием на поверхности ее внешнего слоя (эпидермис) ороговевших клеток. Омертвевшие, обезвоженные клетки рогового слоя имеют удельное сопротивление 106 — 107 кОМ/см. Сопротивление определенного участка кожи зависит от толщины рогового слоя, которая, например, на спине не превышает 0,04 мм, а на ладонях может составлять 0,1 -1,5 мм. Соответственно сопротивление кожи находится в пределах от десятков до сотен килом, приближаясь по своим электрическим свойствам к диэлектрику, обладает значительными емкостными качествами.
Кожа является естественной защитой организма от поражения электрическим током. Во многих случаях при напряжениях в несколько десятков (иногда до сотни) вольт величина тока ограничивается значительным сопротивлением кожи и вместо неизбежной электротравмы происходит знакомый каждому, не оставляющий каких-либо последствий удар током. Однако сопротивление наружного рогового слоя зависит от многих причин и часто падает значительно ниже указанных величин. Особенно сильно сказывается на изолирующих свойствах кожи влажность. Так, например, при длительном мытье рук теплой водой защитные свойства кожи почти полностью исчезают. Это объясняется размягчением рогового слоя, внедрением в него молекул воды, а также открытием многочисленных пор.
В медицинской практике как случайное, так и намеренное увлажнение кожи весьма вероятно. Повышенная влажность может быть вызвана чисто внешними причинами: мытье рук, пролитая жидкость (вода, кровь, моча) и т.п. Медицинский персонал широко использует дезинфицирующие растворы как средство личной гигиены. При многих процедурах тело больного протирают различными жидкими обезжиривающими или дезинфицирующими средствами. Особенно большое значение с точки зрения електробезопасности имеет малое сопротивление кожи под различного рода электродами, накладываемыми на тело с диагностическими или терапевтическими целями. В месте наложения электрода кожу протирают спиртом либо на нее наносят токопроводящую пасту, либо под электрод подкладывают матерчатую прокладку, смоченную изотоническим раствором хлорида натрия (терапия низкочастотными токами) или раствором лекарственных веществ (электрофорез). Во всех указанных случаях сопротивление кожи перестает играть существенную роль в общем электрическом сопротивлении тела больного между электродами.
Кожа может в сильной степени увлажняться и за счет пота, заполняющего потовые протоки и выступающего на поверхности кожи вследствие повышенной окружающей температуры и влажности. Интенсивное потоотделение часто наблюдается и как результат испуга, волнения. Все эти факторы как физиологического, так и психологического происхождения могут значительно снизить сопротивление кожи. Пот уменьшает сопротивление между электродами, наложенными на тело, также за счет заполнения им неровностей тела под электродами, что снижает переходное сопротивление.
Таким образом, в реальных условиях, во многих случаях защитное действие кожи снижается до минимума. В связи с этим при расчетах электрических цепей, связанных с обеспечением электробезопасности, сопротивлением кожи практически пренебрегают.
Электрическое сопротивление внутренних тканей и органов тела отличается значительно большим постоянством, чем сопротивление кожи. Большое количество жидкостей с растворенными в них ионами обусловливает значительную ионную проводимость практически всех тканей (за исключением костных).
Величина сопротивления внутренних тканей зависит от пути тока, т.е. от поперечного сечения тканей, через которые он проходит, и от их длины. Для одного из наиболее распространенных при поражениях путей тока ладонь — ступня установлено, что величина сопротивления внутренних тканей незначительно отличается от 1000 Ом. При этом сопротивление отдельных участков тела по пути тока распределяется неравномерно. Значительная доля общего сопротивления приходится на конечности.
ЗАЩИТА ОТ ПРИКОСНОВЕНИЯ
От прикосновения должны быть защищены части, находящиеся под напряжением выше 42 В. Для электромедицинской аппаратуры, учитывая особенности ее эксплуатации, все находящиеся под напряжением части должны быть защищены от случайного прикосновения. С точки зрения обеспечения электробезопасности важно, чтобы пои касании какой-либо доступной части аппаратуры через тело человека, имеющее электрический контакт с землей или другой доступной частью, не протекал так называемый ток утечки, превышающий допустимое значение.
Основной способ защиты от прикосновения применение корпусов, крышек, щитков и других конструктивных элементов, исключающих доступ к токоведущим частям. При этом должна быть обеспечена, с одной стороны, достаточная механическая прочность ограждения, а с другой — изоляция его от этих частей.
Изоляция, отделяющая находящиеся под напряжением части от ограждающих металлических частей, называется основной. В ряде случаев основная изоляция может выполнять и функции защиты от прикосновения, например, изоляция открыто проложенных проводов. Типичные примеры основной изоляции: опорные стойки, панели для монтажа зажимов, изоляция монтажных и обмоточных проводов, изоляция осей тумблеров от их контактов и т.п. К основной изоляции предъявляются достаточно высокие требования. Ее сопротивление после испытаний на влагоустойчивость должна быть не менее 2 МОм.
При обеспечении недоступности для прикосновения находящихся под напряжением частей следует различать «ПОЛНУЮ защиту от прикосновения» и «Защиту от случайного прикосновения».
Полная защита от прикосновения обеспечивает при всех обстоятельствах недоступность токоведущих частей. Коснуться их можно, только нарушив защитную оболочку. Такая защита обеспечивается, если находящиеся под напряжением части закрыты корпусом, который не может быть вскрыт без поломки даже с помощью инструмента. Наиболее распространенным примером полной защиты являются изолированные провода, шнуры.
В медицинских аппаратах полную защиту от прикосновения, как правило, обеспечить не удается, поэтому применяется защита от случайного прикосновения. Такую защиту обеспечивает корпус с крышками или стенками, которые могут быть сняты только с помощью инструмента, например, с помощью гаечного ключа, отвертки.
Применение инструмента представляет собой намеренное действие, на которое защита от случайного прикосновения не может быть рассчитана. Точно также намеренным является касание отверткой, гвоздем либо другим металлическим предметом токов едущих частей через вентиляционные или другие отверстия в корпусе аппарата. Однако при этом должны учитываться реальные условия эксплуатации, при которых касание через отверстие не может быть ненамеренным, случайным или, наоборот, использование отверстия необходимо при регулировке или настройке аппарата.
Опираясь на прибор при проведении процедуры, либо передвигая его с места на место, врач или медицинская сестра может случайно вставить пальцы в отверстия корпуса аппарата. Не исключена такая вероятность и для пациента. При подобном ненамеренном действии должна быть обеспечена электробезопасность, Те. исключено касание токоведущих частей.
Особенностью электромедицинской аппаратуры является наличие у отдельных ее видов так называемой рабочей части — электродов, излучателей датчиков и т.п. С помощью рабочей части низкочастотных электролечебных аппаратов осуществляется воздействие на пациента постоянным или низкочастотным током. При этом рабочая часть — электроды — находятся в непосредственном контакте с телом пациента и, естественно, не могут быть защищены от прикосновения; в то же время напряжение на них может быть весьма значительным.
Безопасность пациента и медицинского персонала обеспечивается в этом случае строгим выполнением всех правил проведения процедуры, подробно указанных в инструкции по эксплуатации аппарата.
В ряде случаев при высоком рабочем напряжении на неизолированных электродах применяют специальные меры, уменьшающие возможность нарушения правил эксплуатации и связанную с этим опасность поражения электрическим током.
Электромедицинскую аппаратуру по степени связи с телом пациента различают на четыре типа:
К типу Н относится аппаратура, не имеющая рабочей части и находящаяся вне пределов досягаемости пациента (лабораторные приборы, стерилизационное оборудование, потолочные светильники и др.).
Аппаратура типа В находится в пределах досягаемости пациента и может иметь рабочую часть, предназначенную для контактирования с телом пациента, за исключением непосредственного контакта с сердцем.
Если рабочая часть такой аппаратуры изолирована от доступных для прикосновения частей, она относится к типу BF.
А аппаратура, предназначенная для непосредственного контакта с сердцем, имеет изолированную рабочую часть и относится к типу CF.
Для изделий всех типов при единичном нарушении (обрыв заземляющего провода для изделий классов 0I и 1 , однополюсное выключение сети для изделий класса Н , ток утечки не должен превышать 0,5 мА. Для изделий без защитного заземления, т.е. класса II, в нормальных условиях наибольшая величина тока утечки составляет 0,25 мА для типа Н и 0,1 мА для типов В и BF. Учитывая особую опасность тока утечки изделий типа CF при отсутствии защитного заземления, его величина для изделий класса II в нормальных условиях не должна превышать 0,05 мА.
Значительный вклад в ток утечки на корпус вносит трехжильный сетевой шнур. Особенно существенным этот вклад становится, если длина шнура по каким-либо причинам необычно велика (более 3- 4 м .). В этом случае каждый метр сетевого шнура вносит дополнительный ток vтечки около 2,5 мкА (при напряжении фазы питающей сети 220 В). Поэтому при эксплуатации медицинской техники категорически запрещено применение удлинителей.
Ограничение тока утечки до допустимых величин непосредственно связано с обеспечением достаточных путей тока утечки и воздушных зазоров. Сопротивление изоляции между токами идущими и доступными для прикосновения частями определяется не только удельным сопротивлением материала, из которого изготовлена изоляция, и его толщиной, но и расстоянием между этими частями по поверхности изолятора и по воздуху.
Загрязнение поверхности изоляции, покрытие ее пылью, грязью, влагой, обладающими хорошей проводимостью, является наиболее частой причиной пробоев, либо недопустимого увеличения тока утечки.