Что такое активная и реактивная нагрузка
Перейти к содержимому

Что такое активная и реактивная нагрузка

  • автор:

Какие типы электрических потребителей бывают?

Активная и реактивная нагрузка, активно-индуктивная и активно-емкостная, в чем различия?

В повседневной жизни и общениях с клиентами интернет-магазина PowerSol мы выясняем множество технических вопросов и максимально точно подбираем оборудование под инженерные задачи. Имея большой опыт работ и выбора технических решений специалистами компании НТС-ГРУПП (ТМ PowerSol) была собрана масса полезной информации, которую мы попытались структурировать и в сжатом виде донести нашим клиентам путем публикации на сайте. Ниже приведена своеобразная классификация типа нагрузок с небольшими комментариями, а в следующей статье будут описаны особенности выбора мощности, запаса мощности и варианты использования источников бесперебойного питания, стабилизаторов напряжения и электрогенераторов в сетях с несбалансированным распределением потребителей, с различными видами активной и реактивной нагрузок и др.

Применительно к выбору оборудования классифицируем типы нагрузок следующим образом

1. По типу электрического потребления нагрузки делятся на:

АКТИВНУЮ: – Активная (или еще известную, как резистивная) нагрузка. В этом случае закон Ома выполняется в каждый момент времени и аналогичен закону Ома для схем постоянного тока. В качестве примеров : электрическая лампочка накаливания, нагревательный элемент (ТЭН), электрическая плита, бойлер и т.п.

РЕАКТИВНУЮ, которая также разделяется на такие:

  • Индуктивная нагрузка – нагрузка, через которую ток отстает от напряжения и нагрузка потребляет реактивную мощность. Примеры: асинхронные двигатели, электромагниты, катушки дросселей, трансформаторы, выпрямители, преобразователи построенные на тиристорах. Индуктивная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в магнитное поле, а течении следующей половины преобразует энергию магнитного поля в электрический ток. При этом в индуктивной нагрузке кривая тока отстаёт от кривой напряжения на ту же половину полупериода. Примером для данного вида нагрузок может быть дроссель или катушка индуктивности.
  • Ёмкостная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в электрическое поле, а течении следующей половины преобразует энергию электрического поля в электрический ток. При этом в ёмкостной нагрузке кривая тока опережает кривую напряжения на ту же половину полупериода. Примером данного вида нагрузок может быть конденсатор.

На практике чистые реактивные нагрузки в электротехнике не встречаются. Вся электротехника работает с коэффициентом полезного действия ниже 100% вследствие рассеяния части энергии в виде тепловых потерь, потерь при излучении и др. побочных явлений. Таким образом в практической электротехнике применяется понятие активно-реактивной нагрузки. Активно-реактивная нагрузка также подразделяется на две: активно-индуктивная и активно-емкостная.

Активно-индуктивная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной индуктивности. Примером таких нагрузок может быть обмоточный электромагнитный трансформатор, электродвигатель, электромагнитное пускорегулирующее устройство для люминесцентных ламп, катушка зажигания в автомобиле. Для этого вида нагрузок характерен бросок напряжения в момент размыкания электрической цепи.

Активно-ёмкостная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной ёмкости. Примером таких нагрузок может быть конденсатор, электронные блоки питания галогенных или люминесцентных ламп. Для этих нагрузок характерен бросок тока в момент замыкания электрической цепи, особенно если он произошёл в тот момент, когда напряжение в сети максимально, или близко к максимальному.

При протекании тока через активно-реактивную нагрузку часть тока будет протекать через прибор, не производя никакой полезной работы. При этом максимумы и минимумы тока и напряжения будут достигаться в разное время, а кривые изменения по времени тока и напряжения будут не совпадать – оставаясь, при этом, периодическими функциями. Происходит сдвиг тока и напряжения по фазе. Для обозначения зависимости такого сдвига применяется понятие Косинус угла между током и напряжением, и обозначается как cos(ϕ). Этот параметр является очень важным в электротехнике, которым не стоит пренебрегать при расчетах и выборе стабилизаторов напряжения, источников бесперебойного питания и электрогенераторов.

2. Фазность электропотребителей:

  • однофазные – потребители рассчитанные на электропитание от 220/230В по схеме фаза-ноль-земля.
  • трехфазные – потребители для которых необходимо подать напряжение 380В/400В в схеме с нейтралью и землей.

3. По способу распределения нагрузки (для трехфазных схем)

  • Сбалансированные – сбалансированными считают такое распределение потребителей, когда на каждой фазе в трехфазной схеме мощности нагрузок распределены равномерно (с перекосом не более +/-20%). В качестве примера можно привести коттедж с трехфазным вводом электроснабжения, в котором при проектировании и монтаже электрических потребителей 15 кВт мощности равномерно распределили по 5 кВт на каждую фазу. Еще одним примером можно выделить промышленный цех, в котором преобладают трехфазные потребители и таким образом все три фазы будут нагружены равномерно.
  • Несбалансированные – характеризуются как хаотично-нагруженные фазы, где нагруженность фаз может отличаться на 100% между собой. Примером может служить частный трехэтажный дом в котором на каждый этаж отводится одна фаза. Как показывает практика первый этаж дома (т.е. одна из фаз) обычно перегружена в силу того, что на первом этаже размещаются: кухня, бойлерная и комната отдыха, а на остальных этажах спальни с бытовой техникой. В итоге одна фаза может быть нагружена на 100%, а другие используются редко или не сильно нагружены.

Активная, реактивная и полная (кажущаяся) мощности

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

P = √ (S 2 – Q 2 ) или

P =√ (ВА 2 – вар 2 ) или

Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2 ) или

кВт = √ (кВА 2 – квар 2 )

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2 )

квар = √ (кВА 2 – кВт 2 )

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2 )

kUA = √(kW 2 + kUAR 2 )

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

Все эти величины тригонометрически соотносятся друг с другом, как показано на рисунке:

Что такое активная, реактивная и полная мощность нагрузки стабилизатора?

В отличии от вычисления мощности при постоянном токе, формулы для вычисления мощности в цепях переменного тока достаточно сложны. В общем случае электрическая мощность в этом случае имеет интегральные зависимости.

Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Полная мощность определяется как векторное сложение этих величин.

Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии. Для каждого электрического прибора вид преобразования энергии свой: в электрической лампочке электроэнергия преобразуется в свет и тепло, в утюге электроэнергия преобразуется в тепло, в электродвигателе электроэнергия преобразуется в механическую энергию. Фактически, активная мощность определяет скорость полезного потребления энергии.

Реактивная мощность — мощность определяемая электромагнитными полями, образующимися в процессе работы приборов. Реактивная мощность, как правило, является «вредной» или «паразитной». Реактивная мощность определяется характером нагрузки. Для такого прибора как лампочка она равна нулю, в процессе горения лампы электромагнитные поля практически не образуются. В процессе работы электродвигателя реактивная мощность может достигать больших значений. Понятие реактивной мощности тесно связано с понятием «пусковые токи».

При выборе стабилизатора напряжения необходимо определять полную мощность потребителей. Самый точный способ — найти значение полной мощности прибора в его паспорте. Если такой возможности нет, то для определения полной мощности приборов с большими «пусковыми токами» принято использовать повышающий коэффициент «4».

Следует также учитывать, что номинальная мощность стабилизатора напряжения может указываться разными производителями стабилизаторов и ИБП в различных диапазонах входных параметров тока. Китайские производители часто завышают реальную мощность устройства в два и более раз.

Особое внимание при выборе подходящего стабилизатора напряжения или источника бесперебойного питания следует обратить на возможность использования стабилизатора при реактивной нагрузке. Часто производители указывают, что номинальная мощность стабилизатора или ИБП указана без учета реактивной нагрузки. В паспортных данных стабилизаторов и источников питания можно найти фразу «устройство не может использоваться для реактивной нагрузки».

Для работы с приборами, имеющими большую реактивную мощность мы рекомендуем использовать специальные стабилизаторы напряжения и ИБП компании «Бастион». Эти приборы характеризуются большой перегрузочной мощностью и хорошей защитой от помех в сети по нагрузке. Узнайте подробнее об оборудовании здесь

Подробные ответы вы можете найти в следующих статьях:

Что такое полная, активная и реактивная мощность?

В повседневной жизни практически каждый сталкивается с понятием “электрическая мощность”, “потребляемая мощность” или “сколько эта штука “кушает” электричества”. В данной подборке мы раскроем понятие электрической мощности переменного тока для технически подкованных специалистов и покажем на картинке электрическую мощность в виде “сколько эта штука кушает электричества” для людей с гуманитарным складом ума :-). Мы раскрываем наиболее практичное и применимое понятие электрической мощности и намеренно уходим от описания дифференциальных выражений электрической мощности.

ЧТО ТАКОЕ МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА?

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для практических расчётов бесполезна. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность (Real Power)

Единица измерения — ватт (русское обозначение: Вт, киловатт – кВт; международное: ватт -W, киловатт – kW).

Среднее за период Τ значение мгновенной мощности называется активной мощностью, и

В цепях однофазного синусоидального тока , где υ и Ι это среднеквадратичные значения напряжения и тока, а φ — угол сдвига фаз между ними.

Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S, активная связана соотношением .

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность (Reactive Power)

Единица измерения — вольт-ампер реактивный (русское обозначение: вар, кВАР; международное: var).

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними:

(если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью P соотношением: .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до минус 90° является отрицательной величиной. В соответствии с формулой

реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например,асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения

Полная мощность (Apparent Power)

Единица полной электрической мощности — вольт-ампер (русское обозначение: В·А, ВА, кВА-кило-вольт-ампер; международное: V·A, kVA).

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: ; соотношение полной мощности с активной и реактивной мощностями выражается в следующем виде: где P — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q›0, а при ёмкостной Q‹0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Визуально и интуитивно-понятно все вышеперечисленные формульные и текстовые описания полной, реактивной и активной мощностей передает следующий рисунок ��

Полная, активная и реактивная мощность

Специалисты компании НТС-групп (ТМ PowerSol) имеют огромный опыт подбора специализированного оборудования для построения систем обеспечения жизненно важных объектов бесперебойным электропитанием. Мы умеем максимально качественно учитывать большое количество электрических и эксплуатационных параметров, которые влияют на выбор оборудования. Производители ИБП и электрогенераторов в документации обязательно указывают полную и активную мощность. Производители стабилизаторов напряжения обычно указывают коэффициент 1(кВт=кВА). Специалисты компании НТС-ГРУПП помогут Вам разобраться в технических характеристиках и максимально комфортно купить ИБП. Несмотря на то что у нас большой выбор стабилизатор напряжения для дома или офиса- мы поможем Вам найти именно тот, который Вам нужен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *