Поляризация электромагнитных волн
Поляризация — для электромагнитных волн это явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H. Когерентное электромагнитное излучение может иметь:
Эллипс поляризации
- Линейную поляризацию — в направлении, перпендикулярном направлению распространения волны;
- Круговую поляризацию — правую либо левую, в зависимости от направления вращения вектора индукции;
- Эллиптическую поляризацию — случай, промежуточный между круговой и линейными поляризациями.
Некогерентное излучение может быть не поляризованным, либо быть полностью или частично поляризованным.
При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально. Тогда можно говорить о вертикальной и горизонтальной линейных поляризациях волны.
Линейная
Круговая
Эллиптическая
Теория явления
Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например поляризованные вертикально и горизонтально. Возможны другие разложения, например по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.
Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса). Поляризация фотона является одной из реализаций q-бита.
Свет солнца, являющийся тепловым излучением, не имеет поляризации, однако рассеянный свет неба приобретает частичную линейную поляризацию. Поляризация света меняется также при отражении. На этих фактах основаны применения поляризующих фильтров в фотографии и т. д.
Линейную поляризацию имеет обычно излучение антенн.
По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.
Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света прошедшего через поляризаторы подчиняется закону Малюса. На этом принципе работают жидкокристаллические экраны.
Некоторые живые существа [1] , например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например креветка-богомол павлиновая [2] способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией.
История открытия
Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Эразм Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO3), чаще всего имеющими форму правильного ромбоэдра, которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог.
Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Христиана Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, то есть их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).
В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.
Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.
В 1808 г. французский физик Этьен Луи Малюс, глядя сквозь кусок исландского шпата на блестевшие в лучах заходящего солнца окна Люксембургского дворца в Париже, к своему удивлению заметил, что при определённом положении кристалла было видно только одно изображение. На основании этого и других опытов и опираясь на корпускулярную теорию света Ньютона, он предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определённую ориентацию. Такой «упорядоченный» свет он назвал поляризованным.
Параметры Стокса
Изображение поляризации языком параметров Стокса на сфере Пуанкаре
В общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. Полная характеристика эллипса даётся тремя параметрами, например, полудлинами сторон прямоугольника, в который вписан эллипс поляризации A1 , A2 и разностью фаз φ , либо полуосями эллипса a , b и углом ψ между осью x и большой осью эллипса. Удобно описывать эллиптически поляризованную волну на основе параметров Стокса:
,
,
,
.
Независимыми являются только три из них, ибо справедливо тождество:
.
Если ввести вспомогательный угол χ , определяемый выражением (знак
соответствует правой, а
— левой поляризации), то можно получить следующие выражения для параметров Стокса:
,
,
.
На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса ,
,
интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса
. Углы
и
имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре, поэтому эта сфера называется сферой Пуанкаре.
Наряду с ,
,
используют также нормированные параметры Стокса
,
,
. Для поляризованного света
.
См. также
- Поляризация волн
- Поляризатор
- Морская радиополяриметрия
Литература
- Ахманов С. А., Никитин С. Ю. — Физическая оптика, 2 издание, M. — 2004.
- Борн М., Вольф Э. — Основы оптики, 2 издание, исправленное, пер. с англ.,М. — 1973
Примечания
- ↑ Некоторые люди также обладают способностью различать поляризаци света, в частности эти люди могут наблюдать невооруженным глазом эффекты, связанные с частичной поляризацией света дневного неба. Так описывает этот эффект Лев Николаевич Толстой в своей повести «Юность»:
«и, вглядываясь в растворенную дверь балкона … , и в чистое небо, на котором, как смотришь пристально, вдруг показывается как будто пыльное желтоватое пятнышко и снова исчезает;» - ↑http://www.membrana.ru/lenta/?8088
Wikimedia Foundation . 2010 .
Основы радиолокации
Поляризация – это свойство поперечных волн, которое относится к геометрической ориентации колебаний соответствующей волны. Поле, излучаемое антенной, состоит из электрических и магнитных силовых линий. В этом поле силовые линии электрического поля перпендикулярны силовым линиям магнитного поля. Направления обеих этих составляющих зависят от положения антенны относительно земной поверхности. Направление вектора электрической напряженности определяет направление поляризации электромагнитной волны. Различают линейную и круговую поляризацию.
Рисунок 2. Электрическое поле с вертикальной линейной поляризацией
Рисунок 2. Электрическое поле с вертикальной линейной поляризацией
Рисунок 3. Электрическое поле с горизонтальной линейной поляризацией
Линейная поляризация
Установленные горизонтально или вертикально антенны предназначены для излучения и приема, соответственно, горизонтально или вертикально поляризованных волн. В случае несовпадения поляризации волны и антенны будет меняться величина принимаемого сигнала, поскольку будет меняться величина проекции вектора поляризации волны на направление поляризации антенны.
Линейная поляризация имеет две основные формы:
- в вертикально поляризованной волне электрические силовые линии лежат в вертикальной плоскости;
- в горизонтально поляризованной волне электрические силовые линии лежат в горизонтальной плоскости.
Пример: антенны станции наведения ракет зенитного ракетного комплекса С-75 (по классификации НАТО – SA-2), Рисунок 1.
Максимальный принятый сигнал соответствует ситуации, когда приемная антенна ориентирована в том же направлении, что и передающая.
Рисунок 4. Радиолокатор станции наведения ракет зенитного ракетного комплекса С-125 («Нева»).
Фото взято с сайта www.pvo.guns.ru
Конечно, в дополнении к горизонтальной и вертикальной поляризации, линейная поляризация может принимать и другие, промежуточные между этими двумя основными, направления. В частности, специально выделяются средние положения (под углом 45º):
- с наклоном +45º и
- с наклоном -45º.
Пример: антенны станции наведения ракет зенитного ракетного комплекса С-125 (по классификации НАТО – SA-3М), Рисунок 4.
При использовании проволочной одиночной антенны (штыревой антенны) максимальный принятый сигнал будет соответствовать ситуации, когда антенна ориентирована в пространстве так же, как и плоскость, в которой колеблется вектор электрической напряженности волны. Таким образом, вертикальная антенна используется для эффективного приема вертикально поляризованных волн, а горизонтальная – для приема горизонтально поляризованных.
Круговая поляризация
Рисунок 5. Формирование круговой поляризации.
Рисунок 5. Формирование круговой поляризации. Здесь имеется поясняющая анимация (50 кБайт). Для презентации в классе рекомендуется представление demonstrations.wolfram.com
При круговой поляризации силовые линии электрического поля вращаются на 360° с каждым циклом колебания высокочастотной энергии. Круговая поляризация возникает когда на две линейно поляризованные антенны, развернутые друг относительно друга на 90°, подаются два входных сигнала, сдвинутых по фазе на 90° друг относительно друга (Рисунок 5). Рассмотрение поляризации ведется по электрическому полю, поскольку интенсивность электромагнитной волны обычно измеряют в единицах напряженности электрического поля (вольт, милливольт или микровольт на метр). В некоторых случаях ориентация вектора электрической напряженности не остается постоянной, а вращается вместе с распространением волны в пространстве. В таких условиях существуют как горизонтальные, так и вертикальные компоненты поля, волна имеет эллиптическую поляризацию.
В зависимости от направления вращения вектора напряженности круговая поляризация может быть левой или правой. Волна с круговой поляризацией, отраженная дождевой каплей сферической формы, меняет направление поляризации на противоположное. Приемная антенна не пропускает волну с направлением поляризации, противоположным излученной, тем самым сводя к минимуму сигнал от дождевых капель. Отражение от самолета или другой реальной цели будет иметь существенно большую интенсивность, поскольку форма цели не является сферической.
Для наилучшего приема отраженных сигналов поляризации приемной и передающей антенн должны совпадать. В противном случае возникают значительные потери, на практике достигающие 20 … 30 дБ.
При возникновении сильных помех, вызванных отражениями от гидрометеоров, часто применяют круговую поляризацию (если такая возможность имеется). Это дает возможность снизить влияние маскирования полезного сигнала помехами.
Деполяризация
При рассеянии на цели электромагнитной волны ее поляризация может изменяться. В оптическом диапазоне деполяризацией называют изменения в степени поляризованности частично поляризованной волны при ее рассеянии. Например, рассеянная целью волна может иметь большую степень поляризации чем падающая на нее волна, в этом случае деполяризация имеет отрицательную величину.
Деполяризация также показывает пространственное или временное изменение степени поляризации для полностью поляризованной волны, что означает, что может меняться ориентация плоскости поляризации. В этом значении термин «деполяризация» используется, когда речь идет о когерентных высокочастотных волнах. Двухполяризационные метеорологические радиолокаторы имеют возможность излучать волны на двух ортогональных поляризациях (H или V) и принимать как на той же поляризации так и на кросс-поляризации (ортогональной). В таких случаях используют следующие обозначения приемных каналов:
- HH – излучается и принимается горизонтальная поляризация;
- VV – излучается и принимается вертикальная поляризация;
- HV – излучается горизонтальная, а принимается вертикальная поляризация;
- VH – излучается вертикальная, принимается горизонтальная поляризация.
Издатель: Кристиан Вольф, Автор: Андрій Музиченко
Текст доступен на условиях лицензий: GNU Free Documentation License
а также Creative Commons Attribution-Share Alike 3.0 Unported License,
могут применяться дополнительные условия.
(Онлайн с ноября 1998 года)
Поляризация электромагнитных волн
Поляризация электромагнитных волн (ПЭВ) — одно из фундаментальных свойств оптического излучения (света), состоящее в искажении различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). [1]
ПЭВ — явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H.
Когерентное электромагнитное излучение может иметь:
-
Линейную поляризацию — в направлении,
Линейная поляризация
Круговая поляризация
Эллиптическая поляризация
Для понимания явления поляризации света имело её проявление в эффекте интерференции света. Именно тот факт, что когда два световых луча, линейно поляризованных под прямым углом друг к другу, при простейшей постановке опыта не интерферируют, явился решающим доказательством поперечности световых волн (Френель, Араго, Т. Юнг, 1816—19). Поляризация света нашла естественное объяснение в электромагнитной теории света Дж. К. Максвелла (1865—73). Поперечность световых волн (как и любых др. электромагнитных волн) выражается в том, что колеблющиеся в них векторы напряжённости электрического поля интерференции Е и напряжённости магнитного поля Н перпендикулярны направлению распространения волны. Е и Н выделяют (отсюда указанное выше неравноправие) определённые направления в пространстве, занятом волной. При этом Е и Н почти всегда взаимно перпендикулярны, поэтому для полного описания состояния поляризация света требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.
Круговая поляризация [ ]
Круговая поляризация — состояние распространяющейся электромагнитной волны (например, световой), при котором концы её электрического и магнитного векторов Е и Н в каждой точке пространства, где проходит волна, описывают окружности в плоскости, перпендикулярной направлению распространения волны. В России и США используются спутниковы станции, оснащённые вращающимися антенами с круговой поляризацией. В Европе — навигационные телевизионные станции оснащены прямолинеёной поляпизацией. Исторически так сложилось, что раньше СССР использовал для ТВ вещания спутники серии «Молния», находящиеся на высокоэлептических орбитах. Для приема сигнала и слежения за спутниками использовались станции, оснащенные весьма большими антеннами и дорогим высокочувствительным оборудованием Теория явления [ ]
- 1 Круговая поляризация
- 2 Теория явления
- 3 История открытия
- 4 Параметры Стокса
- 5 Использование явления поляризации света
- 6 См. также
- 7 Литература
- 8 Ссылки
История открытия [ ]
Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Эразм Бартолин сообщил о своих опытах с кристаллами Христиана Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие анизотропия свойств кристалла, то есть их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).
В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.
Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.
В Параметры Стокса [ ]
В общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. В оптике правым считается вращение электрического вектора ЭМ волны E по часовой стрелке, если смотреть против направления луча, и левым — против часовой стрелки, в радиофизике — наоборот. Полная характеристика эллипса даётся тремя параметрами, например, амплитудами ортогональных колебаний — полудлинами сторон прямоугольника, в который вписан эллипс поляризации A 1 , A 2 и разностью фаз ϕ , либо полуосями эллипса a , b и углом ψ (азимутом эллипса) между осью x и большой осью эллипса. Удобно описывать эллиптически поляризованную волну на основе параметров S 0 = A 1 2 + A 2 2 , S 1 = A 1 2 − A 2 2 , S 2 = 2 A 1 A 2 cos ϕ , S 2 = 2 A 1 A 2 sin ϕ .
Независимыми являются только три из них, ибо справедливо тождество:
Если ввести вспомогательный угол — угол эллиптичности χ , определяемый выражением χ = ± b / a (знак + соответствует правой, а − — левой поляризации), то можно получить следующие выражения для параметров Стокса:
На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса S 1 , S 2 , S 3 интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса S 0 . Углы 2 χ и 2 ψ имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре , поэтому эта сфера называется S 1 , S 2 , S 3 используют также нормированные параметры Стокса s 1 = S 1 / S 0 , s 2 = S 2 / S 0 , s 3 = S 3 / S 0 . Для поляризованного света s 1 2 + s 2 2 + s 3 2 = 1 .
Использование явления поляризации света [ ]
Особенности взаимодействия поляризованного света с веществом позволили найти его широкое применение в научных исследованиях, в определении структуры твёрдых тел, строения биологических объектов (см., например, анизотропное свойство излучения, позволяет изучать все виды анизотропии вещества — поведение газообразных, жидких и твёрдых тел в полях анизотропных возмущений (механических, звуковых, электрических, световых), в структуре — в подавляющем большинстве — оптически анизотропных материалов, в технике (например, в машиностроении) — упругие напряжения в конструкциях (например, поляризационно-оптический метод исследования напряжений) и т.д.
Взаимодействие поляризованного света с веществом может приводить к оптической ориентации или к настройке генерации мощного поляризованного излучения в лазерах и др. С другой стороны, исследование деполяризации света при фотолюминесценции дает сведения о взаимодействии поглощающих и излучающих центров в частицах вещества, при рассеянии света — ценные данные о структуре и свойствах рассеивающих молекул или иных частиц, в других случаях — о протекании фазовых переходов и т.д. (См. также Флюоресцентный наноскоп).
См. также [ ]
- Литература [ ]
- Ахманов С. А., Никитин С. Ю. — Физическая оптика, 2 издание, M. — 2004.
- Борн М., Вольф Э. — Основы оптики, 2 издание, исправленное, пер. с англ.,М. — 1973
Ссылки [ ]
- ↑http://bse.sci-lib.com/article091314.html
- ↑http://www.oval.ru/enc/56254.html
Что такое поляризация электромагнитных волн
Волны, у к-рых направления электрического (E) и магнитного (H) полей сохраняются неизменными в пространстве или изменяются по определённому закону, наз. поляризованными. За направление П. принято считать направление электрич. поля E волны. Строго монохроматическое излучение всегда поляризовано. У излучения, состоящего из волн различной длины, направление колебаний вектора E результирующей волны может изменяться либо упорядоченно, либо хаотически. Излучение, у к-рого направление вектора E изменяется хаотически, наз. неполяризованным (примером может служить естеств. свет). Часто используют понятие плоскости П., т. е. плоскости, перпендикулярной направлению колебаний вектора E.
Для поляризов. излучения различают: линейную П., при к-рой вектор электрич. поля E сохраняет своё направление в пространстве; круговую П., когда вектор E вращается вокруг направления распространения волны с угловой скоростью, равной угловой частоте волны, и сохраняет при этом свою абс. величину; эллиптическую П., если вращение вектора электрич. поля подобно вращению при круговой П., но величина вектора меняется так, что его конец описывает эллипс. Эллиптич. и круговая П. может быть правой (вектор E вращается по часовой стрелке, если смотреть навстречу распространяющейся волне.) и левой (при вращении в противоположную сторону).
Эл.-магн. волна может быть также частично поляризованной. Частичная П. количественно характеризуется степенью поляризации, к-рая для волн с частичной линейной П. определяется как
Р = (Iмакс — Iмин)/(Iмакс + Iмин) ,
где Iмакс и Iмин — наибольшая и наименьшая плотности потока эл.-магн. энергии через анализатор (поляроид, призму Николя и т.п.).
Источники эл.-магн. излучения генерируют волны различной П. Тепловое излучение , генерируемое хаотически распределёнными атомами и электронами, всегда неполяризовано. Циклотронное излучение , генерируемое системой электронов, вращающихся в магн. поле, имеет круговую П. Синхротронное излучение одного релятивистского электрона имеет эллиптич. П., но система таких электронов даёт линейно поляризованное излучение, т. е. правые и левые вращения эллиптич. П. здесь складываются и компенсируют друг друга. Электрич. вектор синхротронного излучения колеблется в плоскости, перпендикулярной магн. полю, т.к. в этой плоскости всегда остаётся вектор ускорения электрона, движущегося в магн. поле. В магн. поле энергетич. уровни атома расщепляются на различные подуровни, соответственно расщепляются и спектр. линии (см. Зеемана эффект ). Поскольку колебания электронов в магн. поле ориентированы определённым образом, компоненты линии оказываются поляризованными линейно, эллиптически или по кругу в зависимости от угла между полем и лучом зрения.
В космич. условиях эффект Зеемана часто настолько мал, что линии не разделяются, но тогда можно заметить различную П. правой и левой стороны профиля линии. Т.о. был обнаружен эффект Зеемана в солнечных и звёздных магн. полях, а также у линии 21 см межзвёздного водорода.
Состояние П. меняется при распространении эл.-магн. излучения в среде. Так, неполяризов. излучение может стать хотя бы частично поляризованным, а свет, рассеиваясь на свободных электронах, поляризоваться. Наибольшая П. имеет место при рассеянии на 90 o , т.к. раскачиваемый первичной (поперечной) волной свободный электрон воспринимается сбоку как колеблющийся по одной координате. При этом вектор E рассеянной эл.-магн. волны лежит в плоскости, перпендикулярной волновому вектору первичной волны (т.е. вектору, определяющему направление распространения волны). П. при рассеянии света хорошо известна, напр. рассеянный земной атмосферой свет из-за рэлеевского рассеяния на молекулах воздуха поляризован. Подобная П. имеет место в солнечной короне и в атмосферах горячих звёзд, где относительно велика роль электронного рассеяния излучения (см. Атмосферы звезд ). Очевидно, такая П. максимальна на краях звёздного диска, и вектор E поляризов. излучения колеблется по касательной к диску. Для чисто электронной атмосферы макс. степень П. 12%.
Свет поляризуется при рассеянии на частицах космич. пыли в туманностях, а также при рассеянии и поглощении на частицах пыли в межзвёздном пространстве. Природа этого явления, однако, другая. Частицы межзвёздной пыли обычно имеют неправильную форму (напр., удлинённую по одной оси). Они ориентируются межзвёздным магн. полем. Поскольку волна с направлением электрич. вектора вдоль большой оси частицы поглощается и рассеивается больше, чем волна с электрич. вектором вдоль малой оси, то в результате проходящий через среду свет оказывается частично поляризованным. Степень П. (доля поляризов. излучения) обычно не больше неск. процентов.
При распространении радиоволн в плазме поляризация их меняется. Линейно поляризованное излучение состоит из равного количества фотонов с круговой поляризацией разных направлений. Поэтому каждую волну, попадающую в плазму с магн. полем, можно рассматривать как сумму двух волн с круговой или эллиптич. П. (но с разными направлениями вращения электрич. вектора). Эти волны распространяются с разной фазовой скоростью. По выходе из плазмы они складываются.
Право- и левополяризов. волны в плазме имеют не только различные фазовые скорости, но и разные коэфф. поглощения. Поэтому возможен случай, когда неполяризов. волна после прохождения слоя плазмы окажется частично поляризованной по кругу благодаря тому, что волна с др. П. поглотится сильнее. Этот эффект наблюдается в спорадич. радиоизлучении Солнца. Если пренебречь поглощением, но учесть разность фазовых скоростей в плазме волн с разным направлением круговой П., то по выходе из плазмы одна из волн отстанет и при сложении результирующая волна останется линейно поляризованной, но с повёрнутым на нек-рый угол направлением колебаний электрич. вектора. Этот эффект, называемый фарадеевским вращением плоскости поляризации (см. Фарадея эффект ), играет большую роль в исследовании космич. радиоизлучения (см. Мера вращения ). Эффект Фарадея может играть большую роль в формировании П. оптич. излучения звёзд, к-рое может оказаться поляризованным даже при геометрич. симметрии звезды (см. Поляризация излучения ).
Лит.:
Мартынов Д.Я., Курс общей астрофизики, 3 изд., М., 1979; Соболев В.В., Курс теоретической астрофизики, 2 изд., М., 1975.
Публикации с ключевыми словами: поляризация — электромагнитное излучение Публикации со словами: поляризация — электромагнитное излучение |
![]() |
См. также: |