Почему при обрыве нуля появляется 380 в однофазной сети
Перейти к содержимому

Почему при обрыве нуля появляется 380 в однофазной сети

  • автор:

Откуда в розетке 380в при обрыве нуля — наглядно, доступно, без формул.

Domik Electrica

откуда появляется 380в в розетке

Наверняка у каждого из вас, хотя бы раз в жизни сгорали бытовые приборы от перенапряжения. При этом многие слышали, что подобное не редко случается из-за обрыва ноля.

Давайте наглядно без формул, векторных диаграмм, смещений нулевых точек и т.п., с точки зрения обывателя попытаемся разобраться, каким же образом напряжение 380в, вместо привычных 220в, может оказаться в ваших розетках.

Если вам нужен более научный подход, с выкладкой всей теории по данному вопросу, то вот по этой ссылке, можете ознакомиться с отличной статьей, проливающая свет на все электротехнические процессы. Мы же подойдем с несколько другой стороны.

повышенное напряжение в розетке дома при обрыве нулевого провода

Ведь действительно возникает логичный вопрос, как это так, оборвался или отгорел один из проводов, а напряжение ни то что не пропадает, а становится даже больше.

Понимание этого процесса будет полезно каждому потребителю, дабы потом не возникало вопросов, зачем электрики пытаются «всунуть» в электрощиток, непонятные реле, стоимостью несколько тысяч рублей.

Чтобы доступно разобраться в сути этого явления, давайте вспомним разницу между последовательной и параллельной схемой подключения электроприемников.

Схема параллельного включения

последовательная схема подключения электроприемников и потребителей в сеть 220В

При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.

На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.

схема квартирного распределительного щитка однофазный вариант какой лучше

При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.

Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.

Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.

Последовательное подключение токоприемников

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

последовательная схема подключения электроприборов в сеть 220В

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого.

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

применение схемы последовательного подключения лампочек

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2.

схема последовательного подключения электроприборов и потребителей с разной мощностью

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

  • 40Вт — 1210 Ом
  • 60Вт — 806 Ом
  • 100Вт — 485 Ом
  • 200Вт — 242 Ом

В итоге и получается, что на маленьком сопротивлении выделяется маленькое напряжение.

Преподаватели физики очень часто задают вопрос: если две лампочки разной мощности включить последовательно в одну цепь, какая из них будет светить ярче?

Ответ здесь представлен выше. Менее мощная лампа в этом случае, будет всегда светиться ярче.

последовательное подключение в сеть 220в приборов разной мощности и ламп накаливания падение напряжения и токи

Если взять еще более мощный прибор, например 2-х киловаттный чайник или фен, то разница в напряжении будет еще существеннее. Почти все оно будет отдаваться менее мощной лампе, чайник же при этом даже не запустится.

Он будет восприниматься сетью как обычный провод, через который просто течет общий ток. Фактически сеть его замечать не будет, отдавая все напряжение на маломощный объект.

схема аналогии электрического тока и воды в трубе

Для наглядности это можно сравнить с потоком воды, проходящего последовательно через трубы разного диаметра. Сначала у него на пути попадается труба малого диаметра (эл.приемник малой мощности), и чтобы прогнать через нее воду, придется приложить существенное усилие=напряжение.

Далее идет труба с гораздо большим диаметром (эл.приемник большей мощности). При прохождении через нее, никакого усилия=напряжения, вода практически не прикладывает.

Поток как бы и не замечает этого несущественного сужения. То же самое и с электричеством при последовательной схеме.

3-х фазная схема в нормальном режиме

Однако остается главный вопрос, как же это все взаимосвязано с обрывом нуля и перенапряжением в розетках? Дело в том, что напряжение изначально из трансформаторных будок ТП и КТП, выходит и приходит в щитовую дома по 3-х фазной схеме, а не по однофазной, как мы рисовали выше.

схема трехфазного подключения щитовой дома

Что она из себя представляет? В общем случае это четыре проводника:

  • и три фазы А-В-С

подключение проводов питания в щитовой многоэтажного дома

От каждой фазы подключается отдельный потребитель (квартира, дом) или группа потребителей (несколько квартир в подъезде). При этом ноль у всех общий.

Между фазой и нолем будут привычные нам 220V, а между двух фаз — те самые 380V. При нормальных условиях все лампочки и токоприемники работают исправно.

3-х фазная схема питания от КТП и трансформатора
3-х фазная схема питания квартир в многоэтажке при нормальном режиме до обрыва ноля

Можно подключать разную нагрузку, разного номинала, это никак не будет вызывать перенапряжение. Ток в данной схеме течет по каждой фазе, проходит через своего потребителя и уходит через ноль.

Обрыв нуля и его последствия

Что же произойдет, если случится обрыв нуля? Не важно где, в этажном стояке, в самой трансформаторной будке, либо вообще на воздушной линии, если это частный сектор с ВЛ или ВЛИ. Почувствуют это все, кто будет подключен после данного обрыва.

что происходит при обрыве нуля на ВЛ и КЛ с напряжением в домах
что происходит при обрыве нуля на ВЛ и КЛ с напряжением в домах

схема подключения при обрыве нулевого провода откуда появляется 380в в розетках

Так вот, в этом случае ток, начав свой путь от одной фазы, проходит через своего потребителя и уходит к источнику питания не через ноль, потому что там обрыв, а возвращается через другую фазу и сопротивление второго потребителя.

Фактически у нас мгновенно получается вместо параллельной схемы, последовательная схема, рассмотренная ранее. Со всеми ее недостатками и перераспределением напряжения в зависимости от мощности потребителя.

И здесь уже нужно отталкиваться не от 220 вольт, а считать начиная от 380 вольт. Ноля то в цепочке нет, и все электроприемники оказываются включенными между двух фаз.

схема подключения при обрыве нулевого провода откуда появляется 380в в розетках

Если их мощности будут примерно одинаковыми, то напряжение равномерно распределится между всеми розетками в квартирах, и вполне возможно, что никто ничего даже и не заметит.

откуда появляется перенапряжение в розетках и 380в при обрыве нуля схема объяснения

Но стоит кому-то включить у себя что-то помощнее, вот тут то и произойдет моментальный скачок. У данного потребителя в квартире напряжение резко упадет (из-за его мощного токоприемника), а у всех других подскочет.

У кого было меньше всего включено бытовых приборов по фазе, как раз и появится близкое к 380в напряжение. Явление это мы рассматривали ранее при изучении последовательного подключения.

Чем меньше мощность в последовательной цепи, тем больше сюда приходится напряжения. Более мощные потребители получают меньший перекос, менее мощным — достается самое высокое напряжение.

Кстати обрыв нуля может случится не только из-за выгорания контакта, но и по причине того, что какой-то электрик додумался пустить его через отдельный автоматический выключатель. Делать этого категорически нельзя!

что правильнее ставить на вводе в дом автомат или выключатель нагрузки отличия

Если вы хотите разрывать ноль на вводе, то всегда используйте автоматы, которые это делают только с одновременным отключением всех фаз (двух полюсный или четырехполюсный автомат с общим «язычком»).

Как защититься от обрыва нуля

Как с этим бороться? Уберечь себя от повышенного напряжения при обрыве ноля, можно несколькими способами.

почему нельзя заземлять нулевой проводник на вводе в щитовой

Первый способ — это выполнить надежное повторное заземление нулевого проводника. Забегая наперед скажу — способ этот плохой и вредный.

как сделать самостоятельно контур заземления

Данный метод можно использовать в частных домах. Не важно однофазный или трехфазный у вас ввод. Самое главное, сделать качественный заземляющий контур.

После этого, соединяете отдельным проводником шинку нулевой жилы с этим контуром. В случае обрыва нулевого провода, электроснабжение ваших бытовых приборов останется в равновесии и никакого большого перекоса не случится.

что будет при обрыве нуля и повторном заземлении нулевой шины

Ток будет течь от фазы через сопротивление потребителя и уходить через нулевую шинку и его проводник на землю. И так по всем остальным фазам.

111_77

Небольшой перекос здесь конечно же будет присутствовать, но его величина будет зависеть от качества вашего контура заземления. Однако этот способ защиты имеет один жирный минус, который перечеркивает все его преимущества.

Безусловно, контур заземления делать нужно, с этим никто не спорит. Вопрос в том, соединять ли его с нулевым проводником.

Ведь если он будет качественным (10 Ом или даже 4 Ом) только у вас одного по всей улице, а обрыв нулевого провода случится не возле вашего дома, а в самом начале ВЛ, то на этот контур тут же «сядут» все ваши соседи.

сравнение устройств защиты от искрения УЗМ 51МД и УЗИС С1 40 что лучше

Фактически весь суммарный ток пойдет через ваш нулевой проводник. Если вы ноль завели через двухполюсный или четырех полюсный автомат, то он скорее всего выбьет от перегрузки. В противном случае ждите пожара и оплавленной проводки.

111-3xfaz

Поэтому правильно собранный щит (вводной автомат подобранный по нагрузке, заземляющий медный проводник сечением не менее 10мм2) — залог вашей безопасности.

Еще один недостаток такой «контурной защиты» — опасность самому попасть под напряжение. Допустим, несколько лет назад вы сделали отличный контур.

Но по причине наличия солей в почве, он постепенно сгнил, а вы об этом даже и не догадываетесь.

попал под напряжение из-за заземления корпуса и нуля

В итоге при очередном обрыве нейтрали, все заземленное электрооборудование у вас дома окажется под напряжением. Никакой земли то уже нет. А потенциал фазы начнет гулять по корпусам приборов.

111_bjettokom

Пошел открыть холодильник — удар током, зашел в душ — попал под напряжение.

Поэтому надежнее и безопаснее всего применять другой метод.

Защита при помощи реле напряжения

реле напряжения узм51

Данный способ подходит как для частных домов, так и для квартир в многоэтажках. Все что нужно, чтобы защититься от перепадов напряжения и 380в в розетках — это установить внутри вводного щитка модульное реле напряжения.

При этом оно будет защищать приборы и холодильник как от повышенных, так и от пониженных значений. Есть модели, которые дополнительно снабжены встроенной защитой от сверхтоков.

Подробнее ознакомиться с их разновидностями и выбрать для себя подходящую модель, поможет статья ниже.

реле напряжения в розетку

Если же у вас щиток уже полностью укомплектован, и туда невозможно поместить дополнительные модульные устройства — в этом случае воспользуйтесь небольшими реле напряжения, которые просто втыкаются в розетку.

Хотя функциональность у модульных и розеточных вариантов могут отличаться, свою главную задачу — защиту электро-приборов, они выполняют одинаково хорошо.

111_vidstab

На сегодняшний день именно реле напряжения являются наиболее экономичным и эффективным способом борьбы с перепадами напряжения. Стабилизаторы могут подойти далеко не каждому.

Более того, некоторые девайсы даже и не спасут от мгновенного скачка. Так или иначе вызвав пожар, и выход из строя дорогой техники.

Поэтому всегда устанавливайте в своих домах и квартирах именно реле напряжения. Эти устройства средней стоимостью 3000 рублей, помогут вам сэкономить впоследствии сотни тысяч.

Обрыв нуля в однофазной и трехфазной сети. К чему это приводит?

Всем известное словосочетание “Обрыв нуля” обычно связывают с причиной очень опасных последствий и это не только поврежденное оборудование, но так же сюда относят пожар, поражение электрическим током, несчастные случаи, вплоть до летального исхода.

«Обрыв нуля» может произойти как в однофазной, так и в трехфазной сети.

В данной статье хочу обратить ваше внимание на особенности протекающих процессов в том или ином случае.

В трехфазной сети следствием обгорания нуля является перекос фаз, что приводит к повышению напряжения в квартирной розетке до 380 В. При правильной установке заземления, для человека это не опасно, но при этом могут пострадать электроприборы (оборудование) или начаться пожар.

Обрыв нуля может произойти в щитке на этаже, или в распределительном устройстве всего многоквартирного дома.

Обрыв нуля может произойти в щитке на этаже, или в распределительном устройстве всего многоквартирного дома

При обрыве нуля в однофазной сети, напряжение будет равно нулю, и вся техника будет обесточена. Тем не менее, при неправильном заземлении или его отсутствии, корпуса оборудования обретут потенциал 220 В.

Последствия обрыва нуля в трехфазной сети бывают самыми разными, например, если произвести хотя бы кратковременное отключение нуля без отключения общей нагрузки, то крайне велик шанс, что погорит вся бытовая техника (холодильники, телевизоры, стиральные машины и пр.) При этом плавает напряжение, нормализация которого возможна только при восстановлении контакта, в данном случае замены болта.

При обрыве нуля в однофазной сети, напряжение будет равно нулю, и вся техника будет обесточена

Защитой от подобных эксцессов может являться установка защитного трехфазное реле напряжения.

Зачастую, подобного рода случаи имеют место вследствие ошибок “электриков” или износа (ржавчины).

Как минимизировать последствия?

Современные многоподъездные дома запитываются от трехфазной сети, то есть три фазы и ноль.

Кабельный ввод в многоэтажный дом с системой заземления TN-C

А вот схема питания щитка на этаже:

Схема питания щитка на этаже

Схема питания 3 потребителей, без обрыва нуля.

На проводах L1, L2, L3 (фазах) напряжение 220В к нейтрали N. С ней же в распределительном устройстве провод заземления РЕ соединяется на вводе в здание.

Что будет при обгорании нулевого провода N до точки соединения.

Распределительный щит в доме

После места обрыва напряжение теперь нулевым не будет, а будет меняться с различной амплитудой.

Каким будет напряжение у потребителя вместо 220В? Этого точно сказать никто не может, все зависит от многих факторов.

При пропадании нуля, самый безопасный вариант при симметричной нагрузке, это когда сопротивление всех потребителей одинаково, все произойдет без последствий, то есть без перекоса фаз. Такое обычно бывает при включении трехфазных потребителей – это системы электронагревателей или электродвигателей.

Питание происходит через трансформатор с обмоткой в «треугольник»

В промышленности, на производстве, в виду симметричной нагрузки, зачастую нейтраль не используют, так как питание происходит через трансформатор с обмоткой в «треугольник».

Но в жилищном секторе, присутствуют в основном однофазные нагрузки, и соответственно начинается перекос фаз, и насколько он опасен, зависит от многих условий.

В одной квартире, перестанет работать стиральная машина, телевизор, напряжение упадет до уровня менее 100В. Сопротивление в этой квартире ниже, чем тех у соседей по лестничной клетке, которых, к тому же и нет дома, и если в пустой квартире осталась включенной в сеть техника, то весьма велика возможность возгорания, так как напряжение в их розетках подскочило до 300В.

Изменение напряжений пропорционально изменению сопротивлений нагрузок.

Иными словами, где сопротивление больше там выше и напряжение, и наоборот.

При обрыве нуля в однофазной сети, ситуация будет следующей.

Обрыв нуля в однофазной сети

Совершенно не изменится ничего для нагрузки на других фазах.

Но при обрыве в щитке, нулевой провод и вся квартира, окажутся под напряжением 220В.

Приведенные факты говорят о том, что необходим периодический контроль состояния межэтажных щитков, зачастую их состояние бывает аварийным.

Необходим периодический контроль состояния межэтажных щитков, зачастую их состояние бывает аварийным

При пропадание нуля в квартире, при правильно организованном заземлении, опасность минимальна, если, конечно, не трогать провода.

Наиболее эффективная защита от перегорания нуля в трехфазной сети – это реле и стабилизатор напряжения.

105094, г. Москва,
ул. Семеновский Вал, дом 6А

г. Москва, 2-й Иртышский проезд, д.4, стр.1

Почему в розетке 380 Вольт вместо 220

Одна из распространённых причин выхода из строя большинства электроприборов в квартире одновременно — высокое напряжение в розетках. Такая ситуация возникает из-за обрыва нулевого проводника.

откуда в розетке 380 Вольт-otkuda v rozetke 380 Volt

Как связаны между собой эти два явления понятно всем грамотным электромонтёрам, но и обычным людям нужно знать, откуда в розетке 380 Вольт и как защитить бытовую технику от перенапряжения.

Как выполнена система электроснабжения

Элементы электрической цепи могут соединяться двумя способами.

Схема параллельного включения

Как правило, напряжение в квартиру приходит по двум проводам — нулевому и фазному, заземляющий провод в работе электроприборов не участвует.

параллельное и последовательное подключение-parallelnoe podklyuchenie

В свою очередь, питание ко всем однофазным электроприборам подаётся по двум проводам, при этом фаза подключается к одной из клемм всех устройств, а нейтраль присоединяется к оставшимся клеммам. Такое соединение называется параллельным и при этом напряжение на всех приборах одинаковое, независимо от их мощности и сопротивления.

нормальная схема подключения 220 Вольт-normalnaya skhema pitaniya 220V

Таким образом, к сети подключаются не только отдельные электроприборы, но и разные квартиры, присоединённые к одной фазе трёхфазной электропроводки. Квартиры и частные дома, подключённые к другой фазе, в данной схеме не учитываются. Они соединяются с остальными аппаратами не двумя проводниками, а одним — нейтралью.

Последовательное подключение электроприборов

При последовательном соединении устройств фаза подключается к первому электроприбору, от него идёт ко второму, дальше к следующему и только последний аппарат соединяется с нейтралью.

В этой схеме ток во всех электроприборах одинаковый, а напряжение согласно закону Ома обратно пропорционально сопротивлению и мощности аппаратов.

последовательная схема подключения-posledovatelnaya skhema podklyucheniya

схема последовательного подключения лампочек

откуда в розетке может появиться 380В-otkuda v rozetke mozhet poyavitsya 380V

Для примера можно привести вопрос, который преподаватели физики любят задавать ученикам. Если включить последовательно две лампы накаливания — на 100Вт и 25Вт, какая будет светить ярче?

Большинство школьников отвечают, что более мощная, но на самом деле она обладает меньшим сопротивлением, из-за чего на ней будет меньшее напряжение и ярче горит менее мощный светильник.

Информация! Лампочки в ёлочных гирляндах соединяются последовательно, поэтому перегорание одной из них приводит к выходу из строя всего устройства.

Работа 3-х фазной системы

Питание жилых домов осуществляется по трёхфазной четырёхпроводной схеме. При этом отдельные квартиры и частные дома подключаются к разным линейным и общему нейтральному проводам.

В нормальном режиме

Первоначально трёхфазное электроснабжение осуществлялось по шести проводам — трём фазным и трём нейтральным и аппараты в разных фазах никак не соединялись между собой.

В 1891г. по предложению Доливо-Добровольского шестипроводная схема была заменена на четырёхпроводную. Нейтраль в данной системе служит для протекания уравнительного тока и обеспечения стабильного напряжения в сети, не зависящего от тока в остальных фазных проводах.

повышенное напряжение в розетке-povyshennoe napryazhenie v rozetke

Для уменьшения тока в каждой из фаз нагрузка по ним должна быть распределена максимально равномерно. При этом сила тока в нейтрали минимальна.

400 Вольт в розетке как такое может быть-400V

схема квартирного питания-skhema kvartirnogo pitaniya

Электроприборы к трёхфазной сети могут быть подключены двумя способами. В обычном режиме они соединены параллельно в каждой фазе и независимо от аппаратов, присоединённым к другим линейным проводникам. При отгорании ноля устройства в разных фазах соединяются последовательно.

При обрыве нейтрали

Причина того, почему в розетке 380 вольт, заключается в последовательном соединении электроприборов, подключённых к разным фазам и находящихся в разных квартирах или частных домах.

Если в обычном режиме работы они соединены по схеме » фаза А — электроприбор 1- нейтраль — электроприбор 2 — фаза В » и не зависят друг от друга, то при обрыве нейтрали эта схема преобразуется в последовательную » фаза А — электроприбор 1 — электроприбор 2 — фазаВ «.

При этом напряжение питания цепи с фазного 220 В сменится линейным 380 В.

почему в розетке появляется 380 Вольт-pochemu v rozetke poyavlyaetsya 380 V

Если мощность этих устройств одинаковая, то напряжение на них распределиться поровну, по 190 В на каждом, но так бывает далеко не всегда.

Гораздо чаще мощность и сопротивление отличаются, например, в одной квартире включён конвектор с параметрами 1000 Вт и 48 Ом, а к другой фазе подключена светодиодная лампа 10 Вт и 4,8 кОм.

Напряжение в данной ситуации распределится в соответствии с пропорцией Rконв/Rламп=Uламп/Uконв или 48Ом/4,8 кОм=34В/345В. Таким образом, конвектор греться не будет, а лампа сразу сгорит из-за перенапряжения.

Что такое отгорание нуля?

Причина появления 380 вольт в розетке, за исключением ошибок монтажа и короткого замыкания в питающем кабеле, чаще всего заключается в отгорании ноля. Это выражение используется в разговорах электромонтёров и обозначает обрыв нейтрали из-за выгорания клемм или соединений, находящихся в цепи нулевого провода.

В официальных документах используется другой термин — обрыв нейтрали. Он является более правильным, так как включает в себя разрыв нулевого провода по другим причинам — выгорание контактов или неисправность четырёхполюсного автоматического выключателя или разъединителя, а так же плохой контакт в цепи, который устраняется поджатием соответствующей клеммы.

Откуда в розетке может появиться 380 Вольт

Такое высокое напряжение в однофазной сети появляется при обрыве нуля в трёхфазной линии до разделения её на три однофазных.

При этом по нейтрали перестаёт протекать уравнительный ток и напряжение в розетках начинает меняться в зависимости от соотношения мощности электроприборов, подключенных к разным фазам:

  • Мощности приблизительно одинаковые. Во всех квартирах будет около 220В.
  • К фазе А подключено устройство малой мощности, а фазам В и С присоединены одинаковые мощные приборы. При этом в розетках А будет около 270В, а в розетках В и С по 190В.
  • К фазам А и В присоединены маломощные устройства, а к фазе С подключён аппарат большой мощности. В этом случае в розетках А и В напряжение составит около 380 Вольт, а в сети С оно будет около ноля.

обрыв нуля в трехфазной сети-obryv nulya v trekhfaznoj seti

На самом деле такое колебание напряжений происходит достаточно редко, но принцип распределения именно такой.

Возможен так же вариант появления в сети 380В из-за короткого замыкания между одним из фазных проводов и нейтралью с отгоранием последней. Это должно привести к срабатыванию защиты, но при большой длине кабелей аварийное отключение может не произойти.

Чем опасно напряжение 380 Вольт в розетке

Независимо от того, откуда в розетке 380 Вольт, такая ситуация опасно для подключенных к сети электроприборов. При этом резко возрастает потребляемый бытовой техникой ток, что вызывает перегрев электронных элементов и обмоток трансформаторов и электродвигателей.

Не менее опасным для двигателей является пониженное напряжение. При этом электромашина работает в режиме запуска, из-за чего перегревается и выходит из строя.

Большинство электронных приборов, постоянно включённых в розетку, при отключении при помощи пульта ДУ или кнопки на панели управления остаются работать в режиме ожидания. Поэтому, даже если устройство не было включено, перенапряжение может привести к выходу его из строя.

Как защитить технику?

Повышенное и пониженное напряжение может привести к поломкам электроприборов, поэтому для защиты необходимо использовать один из следующих способов.

Реле напряжения РН

Этот прибор постоянно контролирует напряжение в сети и отключает питание при выходе параметров сети за допустимые пределы. Такое устройство есть двух типов, отличающиеся способом установки:

  • В розетку. Используется для защиты одного или нескольких рядом расположенных электроприборов и включается в розетку, а защищаемые устройства включаются в реле. Могут иметь вид небольшой коробочки или удлинителя с несколькими розетками.
  • Модульные. Защищает всю бытовую технику в квартире, устанавливается в электрощитке после вводного автомата и крепится на DIN-рейку.

Стабилизатор

При постоянных колебаниях напряжения в сети даже если РН не отключает питание, электроприборы работают в опасных режимах. Поэтому вместо реле напряжения желательно использовать стабилизатор. Этот прибор поддерживает постоянное выходное напряжение при колебаниях входного.

Такой прибор может подключаться к отдельному электроприбору или для всей электропроводки. Такие устройства имеют значительные габариты и стоимость, поэтому может оказаться целесообразным установка стабилизатора небольшой мощности и прокладка отдельной линии для особо точных аппаратов.

Вывод

Бытовые электроприборы могут работать только при определённых параметрах сети, чаще всего это от 198 до 253 Вольт и для того, чтобы защитить их от повышенного или пониженного напряжения используются реле напряжения и стабилизаторы.

Они могут использоваться с заводскими параметрами, но для самостоятельной настройки приборов защиты важно знать, откуда в розетке 380 Вольт.

Чем опасен обрыв нулевого провода в электрической сети?

Даже те, кто не имеет электротехнического образования, наверняка слышали о такой аварийной ситуации, как перекос фаз. В некоторых предыдущих публикациях мы уже упоминали, чем грозит обрыв нуля, и кратко упоминали о способах защиты от несимметрии фазных напряжений. Сегодня мы более подробно рассмотрим данную тему.

Что такое обрыв нуля?

Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.

Штатная работа системы

Как видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.). В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем. Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.

Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться. К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети. По итогу, в трехфазной системе питания возникнет несимметрия напряжений.

Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.

Что происходит в электросети при обрыве нуля?

Рассмотрим отдельно, изменение режима работы трехфазной сети при обрыве магистрального нуля и как поведет себя однофазная электрическая проводка, если отгорание нулевого проводника произойдет на вводе.

Отгорание нуля в трехфазной сети

Внесем изменения в рисунок 1, вызванные аварией, а именно отключением нуля .

Оборвался нулевой магистральный проводник

В данном случае обрыв общего нулевого провода приведет к тому, что движение электрического тока по нему прекратиться. В результате все квартиры R1-R3 будут запитаны по типу подключения «звезда без нулевой магистрали». Другими словами, при обрыве нуля на каждую квартиру будет поступать не фазное, а линейное напряжение.

Контур из квартир 1 и 2

Для примера предлагаем рассмотреть, как сложится ситуация в квартирах 1 и 2. Нагрузка электрических приборов суммируется в данном контуре при прохождении через него тока I12. Соответственно, уровень напряжения для квартир установится в зависимости от нагрузки подключенных к сети приборов. То есть: U1 = I12*R1, а U2 = I12* R2. Из этого следует, что суммарная величина силы тока составит I12 = U12 / (R1+R2) :

Обратим внимание, что суммарное напряжение контура будет равно линейному в данной электросети, то есть U12 = 380 вольт. Но при этом показатели U1 и U2 могут варьироваться в диапазоне 0-380 вольт и, естественно, существенно отличаться друг от друга. На данные значения может влиять как нагрузка подключенных приборов в каждой из квартир, так и ее активная и пассивная составляющая.

В результате если произойдут проблемы с нейтралью трансформатора (нулем источника), велика вероятность выхода из строя подключенных к сети приборов. Причина – повышение уровня напряжения в сети.

Обрыв нуля в однофазной сети

В данной ситуации последствия будут не такими печальными, как в описанном выше случае, но, тем не менее, если отгорает вводный ноль в системе TN-C, это может представлять серьезную опасность для жизни человека.

Отгорание нуля в схеме однофазного потребителя

Для однофазных нагрузок обрыв нуля будет аналогичен отключению напряжения, за исключением того фактора, что на фазном проводе останется потенциал, представляющий опасность для жизни. Причем, он также проявится там, где был ранее защитный ноль в контактах розеток. Если корпуса электроприборов заземлялись рабочим нулем, то весьма велика вероятность негативных последствий. В системах TN-C-S фактор риска существенно сокращается, за счет использования PEN проводника.

Как защититься?

Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:

  • Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
  • Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
  • Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.

В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.

Подведем итоги

Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.

Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.

Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:

  • Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
  • Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
  • Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
  • Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
  • Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
  • Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
  • Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.

Собственно, только многоуровневая защита может обеспечить максимальную безопасность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *