Как рассчитать напряжение в цепи
Перейти к содержимому

Как рассчитать напряжение в цепи

  • автор:

Расчет простых цепей постоянного тока

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.

Пример 1

Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r= 0,5 Ом. Сопротивления резисторов R1 = 20 и R2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

Схема простой электрической цепи

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи.

Формула 1

Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов.

Формула 2

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем.

Формула 3

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Формула 4

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.

Формула 5

Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2

Общий ток цепи, содержащей два соединенных параллельно резистора R1=70 Ом и R2=90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Схема для примера 2

Два последовательно соединенных резистора ничто иное, как делитель тока. Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов.

Формула 6

Токи в резисторах

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Формула 7

Если у вас возникли затруднения, прочтите статью законы Кирхгофа.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала рассчитать сопротивление цепи

Формула 8

А затем напряжение

Формула 9

Зная напряжения, найдем токи, протекающие через резисторы

Формула 10

Как видите, токи получились теми же.

Пример 3

В электрической цепи, изображенной на схеме R1=50 Ом, R2=180 Ом, R3=220 Ом. Найти мощность, выделяемую на резисторе R1, ток через резистор R2, напряжение на резисторе R3, если известно, что напряжение на зажимах цепи 100 В.

Схема для примера 3

Чтобы рассчитать мощность постоянного тока, выделяемую на резисторе R1, необходимо определить ток I1, который является общим для всей цепи. Зная напряжение на зажимах и эквивалентное сопротивление цепи, можно его найти.

Эквивалентное сопротивление и ток в цепи

Формула 11

Отсюда мощность, выделяемая на R 1

Ток I2 определим с помощью формулы делителя тока, учитывая, что ток I1 для этого делителя является общим

Формула 13

Так как, напряжение при параллельном соединении резисторов одинаковое, найдем U3, как напряжение на резисторе R2

Формула 14

Таким образом производится расчет простых цепей постоянного тока.

Определение напряжения в цепи электрического тока

Напряжение тока , это что

Электричеством пользуются везде, и оно «было всегда» для подавляющего большинства людей. Но вряд ли многие задумывались о природе этого явления. Среди основных электрических терминов наиболее сложными для понимания, несмотря на кажущуюся их простоту, являются «разность потенциалов» и «напряжение в цепи».

Понятие потенциала

Для того чтобы электроны прошли по цепи, необходима энергия, способная привести их в движение по электрическому контуру. Например, в случае со статическим электричеством — это сила, производимая дисбалансом электрического заряда в предметах.

Школьный опыт с натиранием эбонитовой палочки об шерсть иллюстрирует создание избытка электронов в эбоните (отрицательный заряд) и дефицит электронов в шерсти (положительный заряд) при затратах механической энергии на натирание.

Между изолированными электродами этот дисбаланс проявляется лишь в притяжении наэлектризованных предметов друг к другу. Если же их соединить проводником, то электроны пойдут через него от эбонита к шерсти, компенсируя дефицит.

Это и есть электрический ток в цепи, а степень электризации тел есть величина, называемая потенциалом. Упрощённо для понимания того, что называется напряжением, можно рассматривать эту величину как разницу потенциалов между предметами.

Гидравлическая модель

В чем измеряется электрическое напряжение

Процесс получения зарядов в натираемых друг об друга материалах аналогичен наполнению бака воды на высоте из свободного резервуара. В сравнении с зеркалом открытого бассейна ёмкость с водой, расположенную выше, можно рассматривать как аккумулятор энергии. Гравитационные силы наделяют воду на возвышении потенциальной способностью опустошить бак при разгерметизации. Если соединить трубой описываемые ёмкости, вода под действием тяжести создаст поток в ней, освобождая энергию, накопленную от предварительной закачки, вверх.

Подобно неподвижной жидкости в высоком резервуаре, энергия, накопленная в натёртых предметах, называется потенциальной — она имеет возможность (потенциал) быть реализованной движением электронов по проводнику.

В случае со статическим электричеством то, что называется напряжением, можно выразить так: это единица работы, необходимая для перемещения единицы заряда из одного места в другое с преодолением силы, которая пытается сохранить потенциалы уравновешенными.

Мера потенциальной энергии (необходимой работы) на единицу заряда для перемещения его по проводнику — так будет выглядеть описание того, что такое напряжение как определение, применимое к электрическим цепям.

Перечень физических величин, которыми описывают явление напряжения:

  • разность потенциалов — измеряется в вольтах (В);
  • электрический заряд — Кулон (Кл);
  • работа по перемещению заряда — Джоуль (Дж).

Для электрических цепей с гальваническими источниками питания, сетей переменного напряжения или электростатических явлений нет разницы, в чём измеряется электрическое напряжение. Во всех случаях показатель рассматривается как разность потенциалов и определяется в вольтах. Единицу измерения можно представить так: 1В=1Дж/1Кл. Прибор для измерения напряжения называют вольтметром.

Измерения в цепи

Питание во внешнем контуре создаётся источником, выполняющим функцию насоса (в аналогии с водяными резервуарами). Оно принудительно обеспечивается работой электрического поля во внутренней цепи в результате преобразования химических реакций в гальванических элементах или механической энергии в генераторах.

Во внешних электрических цепях движение заряда происходит естественным образом между потенциалами и сопровождается потерями энергии на обеспечение этого движения.

В этой связи источник постоянного питания должен непрерывно поставлять необходимую энергию на поддержание разности потенциалов на двух концах внешней цепи, создавая высокое электрическое давление (по аналогии с гидравлическим примером).

Что называется напряжением

Когда заряд перемещается через внешний контур, он сталкивается с различными элементами схемы, каждый из которых является устройством по преобразованию энергии. Это могут быть лампочки, двигатели, нагревательные элементы. Например, в лампе накаливания энергия электрического потенциала превращается в световое и тепловое излучение. Таким образом, происходит потеря потенциала, то есть он будет различен до нагрузки (лампа) и после неё. Потери электрического потенциала при прохождении через элементы контура называют падением напряжения. Это один из важнейших показателей для контроля работы приборов в цепи.

Перечень основных законов и формул электрического напряжения, описывающих явление в цепях, выглядит так:

  • Формула расчёта напряжения: U=A/q, где q — заряд (Кл), A — работа по перенесению заряда (Дж).
  • Закон Ома: U=IR, где I — сила тока в цепи, R — сопротивление проводника, на концах которого замеряется напряжение.
  • Разность потенциалов на последовательных элементах цепи: U=U1+U2+U3+…+Un.

Важно понимать, что напряжение ни в коем случае не может быть мерой тока. Разность потенциалов и электрический ток — два почти не связанных явления. Теоретически, возможно создать ток без напряжения путём короткого замыкания в вакууме, а обратным примером может служить обычный заряженный конденсатор. Предположение о том, что ток имеет напряжение, — распространённое заблуждение. Это стоит помнить для понимания физики описываемых явлений.

Расчёт параметров участка цепи

«Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка». Соответственно:

J = U/R; U = R×J; R = U/J; P=U²/R

Для расчёта параметров электрической цепи необходимо ввести два любых значения.

Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте support@ivtechno.ru

Разрешается копирование java-скриптов при условии ссылки на источник.

Электрический ток. Закон Ома для участка цепи и полной цепи постоянного и переменного токов

Начнём с терминологии.
Электрический ток – это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное сечение проводника S за единицу времени Δt: I = Δq/Δt .
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление – это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.
Теперь можно переходить к закону Ома.

Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь. По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно для проводников, обладающих постоянным сопротивлением. При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы, этот закон в простейшем виде уже использоваться не может.

Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим прямую связь силы электрического тока с сопротивлением и напряжением, и является самым востребованным как для начинающего радиолюбителя, так идля профессионального разработчика.

Формулировка закона Ома для участка цепи может звучать так: Сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде: I=U/R,

Закон Ома для участка цепи

где: I – сила тока в проводнике, измеряемая в амперах [А];
U – напряжение (разность потенциалов) в вольтах [В];
R – электрическое сопротивление проводника в омах [Ом].

Производные от этой формулы приобретают такой же незамысловатый вид:
R=U/I и U=R×I.

Зная любые 2 из 3-ёх приведённых параметров, можно произвести также расчёт величины мощности, рассеиваемой на сопротивлении нагрузки.

Мощность является функцией протекающего черех нагрузку тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I 2 (А)×R(Ом) = U 2 (В)/R(Ом)

Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.
Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари! Считайте, однако учитывайте размерность, не стирайте из памяти:

Единицы измерения напряжения: 1 В = 1000 мВ = 1000000 мкВ;
Единицы измерения силы тока: 1 А = 1000 мА = 1000000 мкА;
Единицы измерения сопротивления: 1 Ом = 0.001 кОм = 0.000001 МОм;
Единицы измерения мощности: 1 Вт = 1000 мВт = 100000 мкВт
.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатый калькулятор, позволяющий в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.

Калькулятор для проверки результатов расчёта закона Ома

Вводить в калькулятор нужно только два имеющихся у Вас параметра, остальные посчитаются сами.

Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр .
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр .
После этого закон приобретает более солидное название – закон Ома для полной цепи, а формула становится: I=U/(R+r) .

Для многозвенной цепи необходимо преобразовать её к эквивалентному виду:

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5 .
Онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких резисторов можно найти на странице ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока – под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.

А что такое действующее (эффективное) значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов – это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитать действующее значение напряжение интересующей нас формы можно по следующим соотношениям:
1. Для синуса – U = Uд = Uа/√2;
2. для треугольника и пилы – U = Uд = Uа/√3;
3. для меандра – U = Uд = Uа.

С этим разобрались!
А теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае выглядеть это будет так:

Закон Ома для переменного тока

Закон Ома для переменного тока

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид: .

Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице – (ссылка на страницу) и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами:
XC = 1/(2πƒС) , XL = 2πƒL .

Нарисуем ещё один калькулятор для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента – необходимо указать значение частоты f .

Онлайн расчёт полного сопротивления цепи

А теперь рассмотрим практический пример применения закона Ома для цепей переменного тока и рассчитаем простой бестрансформаторный источник питания.

Токозадающими цепями в данной схеме являются элементы R1 и С1.
Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом – 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в – 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА:
Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10. 100 Ом в зависимости от максимального тока нагрузки.
Зададимся номиналами R1 = 30 Ом, С1 = 1 Мкф, частотой сети f = 50 Гц и подставим всё это хозяйство в калькулятор.
Получили полное сопротивление цепи, равное 3.183кОм. Многовато будет – надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости – 3,18 Мкф, при котором Z = 1,04кОм.
Всё – закон Ома выполнил свою функцию, расчёт закончен.

Электрический ток. Закон Ома для участка цепи и полной цепи постоянного и переменного токов

Онлайн расчёт электрических величин напряжения, тока и мощности с резистивными, ёмкостными и индуктивными элементами. Закон Ома простыми словами, теория и практика для начинающих

Начнём с терминологии.
Электрический ток – это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное сечение проводника S за единицу времени Δt: I = Δq/Δt .
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление – это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.
Теперь можно переходить к закону Ома.

Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь. По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно для проводников, обладающих постоянным сопротивлением. При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы, этот закон в простейшем виде уже использоваться не может.

Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим прямую связь силы электрического тока с сопротивлением и напряжением, и является самым востребованным как для начинающего радиолюбителя, так идля профессионального разработчика.

Формулировка закона Ома для участка цепи может звучать так: Сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде: I=U/R,

Закон Ома для участка цепи

где: I – сила тока в проводнике, измеряемая в амперах [А];
U – напряжение (разность потенциалов) в вольтах [В];
R – электрическое сопротивление проводника в омах [Ом].

Производные от этой формулы приобретают такой же незамысловатый вид:
R=U/I и U=R×I.

Зная любые 2 из 3-ёх приведённых параметров, можно произвести также расчёт величины мощности, рассеиваемой на сопротивлении нагрузки.

Мощность является функцией протекающего черех нагрузку тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I 2 (А)×R(Ом) = U 2 (В)/R(Ом)

Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.
Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари! Считайте, однако учитывайте размерность, не стирайте из памяти:

Единицы измерения напряжения: 1 В = 1000 мВ = 1000000 мкВ;
Единицы измерения силы тока: 1 А = 1000 мА = 1000000 мкА;
Единицы измерения сопротивления: 1 Ом = 0.001 кОм = 0.000001 МОм;
Единицы измерения мощности: 1 Вт = 1000 мВт = 100000 мкВт
.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатый калькулятор, позволяющий в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.

Калькулятор для проверки результатов расчёта закона Ома

Вводить в калькулятор нужно только два имеющихся у Вас параметра, остальные посчитаются сами.

Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр .
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр .
После этого закон приобретает более солидное название – закон Ома для полной цепи, а формула становится: I=U/(R+r) .

Для многозвенной цепи необходимо преобразовать её к эквивалентному виду:

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5 .
Онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких резисторов можно найти на странице ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока – под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.

А что такое действующее (эффективное) значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов – это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитать действующее значение напряжение интересующей нас формы можно по следующим соотношениям:
1. Для синуса – U = Uд = Uа/√2;
2. для треугольника и пилы – U = Uд = Uа/√3;
3. для меандра – U = Uд = Uа.

С этим разобрались!
А теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае выглядеть это будет так:

Закон Ома для переменного тока

Закон Ома для переменного тока

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид: .

Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице – (ссылка на страницу) и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами:
XC = 1/(2πƒС) , XL = 2πƒL .

Нарисуем ещё один калькулятор для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента – необходимо указать значение частоты f .

Онлайн расчёт полного сопротивления цепи

А теперь рассмотрим практический пример применения закона Ома для цепей переменного тока и рассчитаем простой бестрансформаторный источник питания.

Токозадающими цепями в данной схеме являются элементы R1 и С1.
Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом – 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в – 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА:
Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10. 100 Ом в зависимости от максимального тока нагрузки.
Зададимся номиналами R1 = 30 Ом, С1 = 1 Мкф, частотой сети f = 50 Гц и подставим всё это хозяйство в калькулятор.
Получили полное сопротивление цепи, равное 3.183кОм. Многовато будет – надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости – 3,18 Мкф, при котором Z = 1,04кОм.
Всё – закон Ома выполнил свою функцию, расчёт закончен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *