Светодиод как индикатор сетевого напряжения
Перейти к содержимому

Светодиод как индикатор сетевого напряжения

  • автор:

Индикатор отклонений сетевого напряжения

При питании некоторой радиоаппаратуры от сети переменного тока нужно следить за стабильностью ее напряжения и при отклонении напряжения сверх допустимой нормы либо отключать аппаратуру, либо изменять напряжение на ней, например, с помощью автотрансформатора. Для сигнализации отклонений сетевого напряжения можно использовать предлагаемый индикатор (см. рис.), выполненный на трех светодиодах и двух динисторах. Особенностью устройства является включение индикаторов (светодиодов) при каждом положительном полупериоде сетевого напряжения, но лишь при определенной амплитуде его, равной порогу срабатывания, и выключение при снижении мгновенного значения напряжения до нуля. Это исключает гистерезис и повышает точность индикации. Индикатор можно включать как в сетевую розетку, так и в розетку автотрансформатора. На входе индикатора стоит ограничитель напряжения из диода VD1 и стабилитрона VD2, а после него следуют три параллельно включенные цепочки индикации. Первая из них, состоящая из резистора R1 и светодиода HL1, предназначена для индикации наличия сетевого напряжения. Остальные цепочки, состоящие из делителей напряжения, пороговых устройств на динисторах и включенных последовательно с ними светодиодов, предназначены непосредственно для индикации отклонений напряжения. Переменным резистором R3 устанавливают нижний порог срабатывания, когда сетевое напряжение упадет, скажем, на 5 %, a R5 — верхний порог, когда напряжение возрастет на столько же. Если сетевое напряжение в норме, горят светодиоды HL1 и HL2. При понижении напряжения светодиод HL2 гаснет, а HL1 продолжает светиться. Когда же напряжение возрастает, горят все светодиоды. Налаживать индикатор удобнее всего с автотрансформатором, на выходе которого можно устанавливать нужные напряжения, и переменными резисторами регулировать порог включения соответствующих светодиодов. Если при пониженном напряжении светодиод HL2 не гаснет, придется увеличить сопротивление резистора R2. Укрепив переменные резисторы на лицевой панели конструкции и снабдив их отградуированной шкалой порогов срабатывания того или иного светодиода, индикатор можно использовать для самых разнообразных целей. РАДИО 6-1985 г., c.39.

Бутев В. Опубликована: 2005 г. 0 0

Вознаградить Я собрал 0 0

Оценить статью

  • Техническая грамотность

Оценить Сбросить

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (0) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

Статью еще никто не комментировал. Вы можете стать первым.

iMAX B6 - зарядное для Lion, LiPo, LiFe, Pb, NiCd и NiMH аккумуляторов

iMAX B6 — зарядное для Lion, LiPo, LiFe, Pb, NiCd и NiMH аккумуляторов

Катушка Тесла AVR-программатор USB ASP

1999-2024 Сайт-ПАЯЛЬНИК ‘cxem.net’
При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник

Светодиодный индикатор сетевого напряжения

Схема индикатора сетевого напряжения показана на рис. 1. При её разработке была поставлена задача максимально использовать доступные радиодетали. В этом случае донорами элементов могут послужить вышедшие из строя КЛЛ [1, 2]. Используемые детали должны быть, конечно, исправными. В таком индикаторе обязательно должны быть пороговые элементы, которые срабатывают (или переключаются) при определённом напряжении. Такими элементами в индикаторе являются динисторы DB3. Они открываются при напряжении 28. 36 В, которое остаётся практически постоянным. Следует учесть, что при изменении полярности напряжение открывания может отличаться на ±3 В. На динисторах собраны релаксационные RC-генераторы.

Схема индикатора сетевого напряжения

Рис. 1. Схема индикатора сетевого напряжения

Сетевое напряжение выпрямляет диод VD1, пульсации сглаживает конденсатор С1. Резисторы R2-R7 образуют резистивный делитель напряжения, который задаёт пороги включения релаксационных генераторов. Первый генератор собран на элементах R8, C4 и VS2. Напряжение его включения (в данном случае 150 В) устанавливают подстроечным резистором R4. Когда ди-нистор VS2 открывается, конденсатор С4 разряжается через него, светодиод HL1 и резистор R11. При этом светодиод вспыхивает с частотой в доли герц. По мере увеличения напряжения частота вспышек возрастает.

Когда напряжение сети достигнет 190 В, начнёт работать второй генератор на элементах R9, C3 и VS3. Напряжение срабатывания устанавливают подстроечным резистором R5. Этот генератор работает с частотой несколько десятков или сотен герц. С такой же частотой станет открываться транзистор VT1, поэтому конденсатор С4 не успевает зарядиться и первый генератор перестанет работать. В результате светодиод погаснет.

При достижении напряжения 240 В начнёт работать третий генератор на элементах R10, C2, VS1. Порог срабатывания устанавливают подстроечным резистором R6. Поскольку ёмкость конденсатора С2 существенно меньше ёмкости конденсатора С4, частота третьего генератора будет существенно больше — несколько герц. Таким образом, интервал напряжения 150. 190 В индицируется вспышками светодиода с существенно меньшей частотой, чем при напряжении более 240 В. Так можно отличить индицируемые интервалы напряжения.

Если этого не нужно, для обеспечения «постоянного» свечения светодиода ёмкость конденсаторов С2 и С4 необходимо уменьшить до 0,047. 0,1 мкФ, а ёмкость конденсатора С3 — до 10 нФ. В этом случае вспышки светодиода следуют с частотой, неразличимой глазом.

Чертёж печатно платы и размещение элементов на ней

Рис. 2. Чертёж печатно платы и размещение элементов на ней

Большинство элементов смонтировано на печатной плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5. 2 мм, чертёж который показан на рис. 2. От КЛЛ можно использовать диод 1N4007, динисторы DB3, транзистор серии хх13001, конденсаторы С1 (оксидный) и С3 (плёночный). Потребуется приобрести под-строечные резисторы СП3-19 или подходящие импортные, постоянные резисторы — С2-23, Р1-4, конденсаторы С2 и С4 — К50-35 или импортные, а также светодиод любого цвета свечения, но обязательно сверхъяркий с допустимым током не менее 20 мА. Если в сети возможно появление напряжения более 280 В, номинальное напряжение конденсатора С1 должно быть более 400 В.

Внешний вид смонтированной платы

Рис. 3. Внешний вид смонтированной платы

Внешний вид смонтированной платы показан на рис. 3. Она размещена в пластмассовом цилиндрическом контейнере от лекарства диаметром 30 мм и длиной 60 мм. В крышке контейнера установлены штыри разъёма ХР1 (вилки ШП-4). Резистор R1 установлен между разъёмом и печатной платой. Для светодиода в дне контейнера сделано отверстие соответствующего диаметра. Внешний вид устройства показан на рис. 4. Для размещения платы можно использовать и другой пластмассовый корпус, а подключение к сети сделать с помощью кабеля с сетевой вилкой.

Внешний вид устройства

Рис. 4. Внешний вид устройства

Налаживание сводится к установке порогов срабатывания генераторов резисторами R4-R6, об этом сказано выше. Сместить пороги включения генераторов можно подборкой резисторов R2, R3. Увеличение их сопротивления увеличивает пороги срабатывания. Если требуется увеличить пороги, надо увеличивать сопротивление резистора R3. Для уменьшения порогов следует уменьшить сопротивление резистора R2.

Используя схемные решения, применённые в этом индикаторе, можно сделать и другой алгоритм индикации.

1. Нечаев И. Из деталей энергосберегающих люминесцентных ламп. — Радио, 2012, № 6, с. 26-28.

2. Нечаев И. Из деталей КЛЛ. Светодиодная мигалка для новогодней игрушки. — Радио, 2012, № 11, с. 36, 37.

Автор: И.Нечаев, г. Москва

Лучший вариант схемы питания светодиода от 220 вольт. Как подключить индикаторный светодиод к сети 220.

Порой возникает необходимость подключить обычный светодиод к сетевому переменному напряжению величиной 220 вольт. Например, это может быть нужно при установке светодиодного индикатора на переднюю панель какого-либо электроприбора, который будет сигнализировать об определенном режиме работы той или иной функции устройства. Допустим это индикатор наличия сетевого питания, или сигнальная лампа аварии и т.д. Как известно, большинство обычных индикаторных светодиодов изначально рассчитаны на постоянное низковольтное напряжение величиной от 1,5 до 4 вольт. Сила тока, которую могут потреблять такие светодиоды около 5 — 20 миллиампер. Следовательно, чтобы запитать такой световой диод от более высокого напряжения, да к тому же переменного типа, нужна специальная схема.

Схема питания светодиода от 220 вольт, как подключить

Данная схема, по моему мнению, является наилучшим вариантом подключения индикаторного светодиода к переменному, сетевому напряжению 220 вольт. Она имеет, пожалуй, всего один недостаток, это относительно большое количество деталей. Во всем остальном она хороша (ее элементы не нагреваются, светодиод защищен от пробоя высоким обратным напряжением, имеющиеся незначительные пульсации света не заметны человеческому глазу, путем изменения емкости конденсатора можно подбирать нужную силу тока, которую будет потреблять светодиод, возможность подключения множества световых диодов в схему).

Теперь давайте разберем саму электрическую схему, ее работу, назначение функциональных элементов. Итак, в начале схемы стоит конденсатор C1, который является ограничителем тока. Как известно конденсаторы не пропускают через себя постоянный ток, тем самым являясь для него бесконечно большим сопротивлением. Переменный же ток конденсаторы могут весьма хорошо пропускать, и величина этого тока будет зависеть от частоты и от емкости конденсатора. Поскольку в обычной электросети частота стандартизирована и равна 50 герцам, то силу тока в схеме мы можем менять только за счет подбора соответствующей емкости.

какой конденсатор нужен для питания светодиода индикатора от напряжения 220 вольт

Стоит заметить, что конденсатор C1 не должен быть электролитом (иметь полюса)! Поскольку в этом случае он попросту может взорваться. В схему ставится емкость пленочного типа. Величина напряжения данного токоограничительного конденсатора должна быть более 250 вольт (можно и 250 В, но лучше 400 В или 600 В). В данной схеме питания индикаторного светодиода от напряжения 220 вольт емкость конденсатора равна 220 nF (220 нанофарад, они же 0,22 микрофарад). Данная емкость соответствует силе тока около 15 миллиампер, что является вполне оптимальным вариантом питания обычного индикаторного светодиода. Напряжение же на световом диоде осядет ровно столько, сколько ему требуется для своей нормальной работы (в схеме питающая энергия контролируется силой тока, а нужное постоянное напряжение возникает вследствии падения напряжения на светодиоде).

Вот таблица зависимости емкости конденсатора C1 от силы тока светодиода:

таблица зависимости емкости конденсатора C1 от силы тока светодиода

Параллельно конденсатору C1 стоит резистор R1. Его функция заключается в разряде конденсатора, после отключения схемы от питающего напряжения. То есть, данная схема питания индикаторного светового диода будет работать и без R1, но тогда существует большая вероятность, что Вас может ударить небольшим током (при случайном соприкосновении с токопроводящими частями схемы) даже после отключения питания от этой схемы. Этот резистор просто снимает накопленный электрический заряд с конденсатора, и все. Его можно поставить небольшой мощности, величиной около 1 мегаома (от 500 килоом до 2 мегаом).

На схеме можно увидеть еще один резистор R2, который является токоограничительным. Для переменного тока фиксированной частоты и напряжения конденсатор будет иметь свое определенное реактивное сопротивления, которое нам и ограничивает силу тока для питания светодиода. Но вот для случайных всплесков напряжения, что возникают в электросети по причине включения и выключения различных, мощных индуктивных нагрузок (сварочные аппараты, мощные трансформаторные блоки питания, индукционные электроплиты, обогреватели и т.д.) наш конденсатор будет иметь практически нулевое сопротивление.

как защитить светодиод от сгорания при всплеске напряжения в сети

То есть, если Ваш сосед часто включает и выключает такие мощные индуктивные нагрузки, то возникающие всплески напряжения легко пройдут через конденсатор и осядут на индикаторном светодиоде, что с большой вероятностью его может вывести из строя. Именно силу тока таких всплесков призван ограничивать резистор R2. В схеме номинал этого резистора может быть от 68 ом до 150 ом (мощность 0,5 ватт).

Ну и последней, важной функциональной частью схемы питания индикаторного светодиода от напряжения 220 вольт является выпрямительный диодный мост. Его роль заключается в преобразовании переменного напряжения в постоянное (хотя и скачкообразное). Этот мост все полуволны переменного напряжения переводит в одну полуволну, частота которой уже будет 100 герц. Именно эта частота уже не воспринимается как мерцающая. То есть, раздражающих световых мерцаний мы не заметим.

диодный мост для питания светодиода индикации от сети 220 вольт

При подборе этого диодного моста важно чтобы его диоды (или готовый мост в виде целостной сборки) были рассчитаны на обратное напряжение более 400 вольт, и силу прямого тока более того, что будет потребляться индикаторным светодиодом. В схеме я поставил на диодный мост диоды типа 1N4007, у которых обратное напряжение равно 1000 вольт, и прямой ток они выдерживают до 1 ампера. Стоят они недорого! Имеют маленькие размеры. Широко распространены, легко доступны.

Ну вот и все, что касается элементов данной электрической схемы питания светодиода индикатора от переменного, сетевого напряжения 220 вольт. Как я уже говорил выше, единственный недостаток этой схемы заключается в том, что она содержит относительно много элементов. Во всем остальном она хороша. Так что если кому нужно, берите и собирайте ее.

P.S. На просторах интернета можно найти множество более простых схем для питания световых диодов от 220 В. Они имеют, как свои достоинства, так и свои недостатки. Среди них я выбрал наиболее оптимальный и рабочий вариант, чем собственно с вами и поделился в этой статье.

СЕТЕВОЙ ИНДИКАТОР НА СВЕТОДИОДЕ

Перед работой, цепи с опасным для жизни напряжением необходимо обесточить, но всегда есть вероятность отключить не тот пакетный выключатель со всеми вытекающими последствиями. Индикатор фазы служит для проверки того, действительно ли в цепи отсутствует высокое напряжение. Простейший индикатор фазы обычно построен на основе неоновой лампочки, и знаком любому, кто как-то работает с сетевым напряжением.

отвертка индикатор

Можно построить подобный индикатор на светодиоде. Данный индикатор сетевого напряжения собран по схеме, описанной в статье «Светодиодный индикатор сетевого напряжения», автор С. Лысый, журнал «РадиоМир» №4 2015.

СЕТЕВОЙ ИНДИКАТОР НА СВЕТОДИОДЕ - схема

Роль индикатора играет светодиод VD1 АЛ307, подключенный к выводам диода VD2 КД105. В конструкции применены резистор R1 1,3 кОм, типа МЛТ-0,5, конденсатор C1 0,1 мкФ, 630 В, типа К73-17.

СЕТЕВОЙ ИНДИКАТОР НА СВЕТОДИОДЕ

В роли корпуса индикатора выступает пластиковая упаковка от сменных лезвий к ножу для резки картона. Один из выводов выполнен коротким отрезком одножильного медного провода, второй вывод выполнен в виде отрезка тонкого многожильного провода с зажимом типа «крокодил» на конце. Для работы устройства надо подключить оба вывода индикатора к исследуемым контактам. Светодиод загорается когда «фаза» оказывается, подключена со стороны конденсатора С1. Спасибо за внимание. Автор статьи Denev.

Originally posted 2019-07-12 09:57:47. Republished by Blog Post Promoter

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *