При какой скорости воздуха в воздуховоде возникает шум
Перейти к содержимому

При какой скорости воздуха в воздуховоде возникает шум

  • автор:

Акустические требования и правила проектирования малошумных систем вентиляции

В большинстве случаев весьма эффективной мерой борьбы с шумом в системе вентиляции является рациональный выбор параметров и качества этой системы на стадии ее проектирования, в частности, выбор состава, протяженности, оптимального количества подаваемого воздуха, выбор вентилятора, размеров воздуховодов и скорости потока в них, компоновки арматуры.

При проектировании системы вентиляции необходимо, прежде всего, выбирать воздухообмены (количество воздуха) без излишних запасов, т. к. с увеличением количества воздуха возрастают скорости его движения в элементах воздуховодов и их гидравлические сопротивления или поперечные размеры. Следствием этого является рост поступающего в помещение потока звуковой энергии.

Сопротивление системы вентиляции определяется конфигурацией и размерами сети воздуховодов при условии, что сопротивление равно развиваемому давлению вентилятора.

Конфигурация системы вентиляции обычно задана условиями компоновки, а размеры — экономичностью, минимальными габаритами и низкой генерацией шума в фасонных элементах.

Оценка влияния параметров системы вентиляции на ее шумность

Влияние параметров системы вентиляции на ее шумность можно оценить с помощью двух, известных из работ Е. Я. Юдина, уравнений, справедливых при отсутствии противодавления, когда сопротивление сети равно полному давлению вентилятора:

— уравнение для уровня шума в помещении:

(1)
— уравнение сети воздуховодов в отвлеченных координатах:
(2)

где y — коэффициент давления; f — коэффициент расхода; Q, D — расход воздуха и диаметр патрубка вентилятора (воздуховода); Fc — площадь сечения патрубка вентилятора (воздуховода); x c — коэффициент сопротивления, учитывающий потери в фасонных элементах и прямых участках воздуховодов; B — величина, включающая критерий подобия вентилятора и звукопоглощение в помещении.

Из уравнения (1) видно, что при постоянной рабочей точке ( y , f ) на безразмерной характеристике вентилятора величина D 2 /Fc постоянна для заданного x c.

Это уравнение также дает возможность оценить влияние параметров сети воздуховодов, а именно:

а) при заданной конфигурации сети и размерах воздуховодов уменьшение расхода снижает уровень шума на величину D L = 60lg Q2/Q1;

б) увеличение поперечных размеров воздуховодов снижает уровень шума на величину, равную D L = 50lg Fс2/Fс1;

в) снижение коэффициента сопротивления сети также является важным средством снижения шума ( D L = 30lg x c2/ x c1 ), поэтому следует стремиться к применению фасонных элементов более совершенной аэродинамической формы.

Из уравнения (2) следует, что снижение коэффициента гидравлического сопротивления воздуховодов, увеличение их поперечного сечения и уменьшение по возможности производительности дает экономию электроэнергии. Мощность, потребляемая вентилятором, пропорциональна произведению расхода воздуха и развиваемого напора, который пропорционален квадрату скорости движения воздуха по воздуховоду.

Рисунок 1.

Удельные уровни звуковой мощности вентиляторов (сторона нагнетания)

С одной стороны, увеличение скорости потока воздуха позволяет уменьшить площадь поперечного сечения воздуховода, сделать его компактным и тем самым снизить затраты на изготовление и монтаж. С другой стороны, повышение скорости потока воздуха приведет к необходимости применения высоконапорных вентиляторов, а они при одинаковой производительности с низконапорными потребляют более высокую (дополнительную) энергию, а, следовательно, имеют более высокие эксплуатационные расходы.

В каждом конкретном случае следует искать компромиссное решение между этими противоречивыми требованиями.

Компоновка и планировка системы вентиляции

При компоновке и планировке системы вентиляции целесообразно руководствоваться следующими соображениями:

1. Вблизи вентиляционной камеры не должно быть помещений с низким уровнем собственных шумов (при размещении таких помещений вдали от венткамеры снижается передача шума по воздуховодам).

2. Следует избегать протяженных сетей воздуховодов или расположения помещений на больших расстояниях от вентилятора; в помещениях, которые близко расположены от вентилятора, создаются невыгодные с акустической точки зрения условия, при которых окружная скорость и мощность вентилятора, определяемые давлением для дальнего участка, — излишне высокие для ближнего помещения, а поступающее в ближнее помещение количество воздуха — недопустимо большое, и, таким образом, приходится дросселировать ответвление, повышая тем самым излучаемый системой шум.

3. Дроссель-клапаны следует располагать как можно дальше от обслуживаемого помещения, а за ними (перед решетками) следует предусматривать концевые глушители или гибкие воздуховоды со звукопоглощением.

4. В сети воздуховодов максимальные скорости потока воздуха следует устанавливать на основе существующих в вентиляционной практике норм с учетом акустических требований.

5. Система воздухораспределения должна иметь минимальное гидравлическое сопротивление, поскольку генерация шума вентилятором, независимо от его типа, увеличивается с ростом развиваемого им статического давления.

6. При высоком уровне шума нельзя забывать о применении глушителей, предусматривая места для их установки; отсутствие места для глушителя — распространенный недостаток многих проектов.

7. Аэродинамическое, акустическое регулирование и наладку смонтированной системы вентиляции следует производить совместно, добиваясь наименьшей шумности при подаче заданного количества воздуха.

Рисунок 2.

Поправка на режим работы вентилятора. hD, % — отклонение от режима hmax

Подбор вентилятора

При подборе вентилятора важно обращать внимание на следующие условия:

1. Вентилятор должен иметь наименьший удельный уровень звуковой мощности (критерий шумности) и спектральный состав шума, соответствующий заданным условиям эксплуатации, при прочих оптимальных параметрах и максимальном КПД ( h max).

2. Мощность вентилятора должна соответствовать гидравлическим потерям в сети воздуховодов, т. е. его аэродинамические параметры должны быть подобраны в соответствии с техническими потребностями проекта.

3. Следует избегать применения вентиляторов с числом лопаток менее 12; они часто генерируют интенсивные тональные составляющие аэродинамического шума на частоте прохождения лопаток и ее гармониках; их интенсивность зависит от конструкции вентилятора, от колебаний потока на входе в рабочее колесо и от реакции системы воздуховодов.

4. Присоединяемые воздуховоды на стороне всасывания и нагнетания должны быть в 2—3 раза больше максимального размера (диаметра) патрубка вентилятора, они обеспечивают равномерный поток воздуха; отклонения от таких схем могут существенно повлиять как на аэродинамическую, так и на акустическую характеристики вентилятора.

5. В системах вентиляции с регулируемым расходом воздуха особое внимание следует уделять влиянию изменения аэродинамических параметров на звуковую мощность вентилятора, например, уменьшение расхода воздуха посредством изменения угла установки лопаток может значительно увеличить уровень шума.

6. Снижение уровня шума вентилятора может быть достигнуто посредством снижения скорости вращения рабочего колеса в допустимых пределах при сохранении его мощности (расхода воздуха и давления).

7. Между патрубками вентилятора и воздуховодами рекомендуется устанавливать гибкие вставки, снимающие напряжения и предотвращающие передачу вибрации от вентилятора.

Рисунок 3.

Шумовая характеристика вентилятора ВЦ-14-46 № 5 (сторона нагнетания):

1 – паспортные данные;

2 – расчет по формуле (3);

3 – расчет по формуле (4)

Методы измерений шумовых характеристик

Для большинства типов вентиляторов характерно существование трех независимых путей распространения шума: по воздуховодам всасывания, нагнетания и через стенки корпуса в окружающее пространство, т. е. вентилятор рассматривается как совокупность трех отдельных источников шума. Как источник шума вентилятор представляют с помощью безразмерных и размерных шумовых характеристик [1].

Безразмерная шумовая характеристика — это безразмерный спектр вентиляторного шума. Она позволяет по результатам измерений шума вентилятора одного размера D и при окружной скорости u найти спектр шума такого же вентилятора при других размерах и скоростях, сохраняя постоянным лишь коэффициент производительности f . При пересчете нужно сохранять одинаковыми безразмерные частоты f/n (n — частота вращения рабочего колеса, об/с) на границах частотных измерительных полос.

Размерная шумовая характеристика — это уровни звуковой мощности в октавных полосах частот. Они измеряются стандартными методами. Для реализации стандартных методов измерений шумовых характеристик требуются измерительные камеры и испытательные стенды, строительство которых связано с большими материальными затратами. Средства заводов-изготовителей ограничены, поэтому они в технических паспортах вентиляторов приводят характеристики аналогичных агрегатов или расчетные данные. В результате, выполняемые на их основе акустические расчеты, не отражают реальную акустическую ситуацию, а затраты на шумоглушение оказываются завышенными или неэффективными.

Рисунок 4.

Допустимая скорость потока в концевом глушителе в зависимости от назначения обслуживаемого системой вентиляции помещения

В таких случаях весьма актуальными становятся расчетные методы. Особенность отечественной методики расчета октавных уровней звуковой мощности вентиляторов была закреплена в основополагающем документе в области борьбы с шумом [2], действующем около 30 лет, в руководстве к нему [3] и выражается полуэмпирической формулой:

(3)

где Lкш — критерий шумности, зависящий от типа и конструкции вентилятора, дБ;

p n — полное давление, создаваемое вентилятором, кгс/м 2 ;

Q — объемный расход воздуха вентилятора, м 3 /с;

D Lреж — поправка на режим работы вентилятора, дБ;

D L1 — поправка, учитывающая распределение звуковой мощности по октавным полосам частот и зависящая от типа и частоты вращения вентилятора, дБ;

D L2 — поправка, учитывающая акустическое влияние присоединения воздуховода к вентилятору, дБ.

По формуле (3) сначала рассчитывается суммарный уровень звуковой мощности отечественного вентилятора (для данного направления излучения шума) по его критерию шумности, Lкш, и аэродинамическим параметрам при h max. Затем с помощью поправки D Lреж учитывается изменение этого уровня на заданном режиме, а с помощью поправки D L1 определяются октавные уровни звуковой мощности шума, излучаемого, например, патрубком всасывания вентилятора в окружающее пространство. Чтобы определить величину звуковой мощности, излучаемой в присоединяемый воздуховод, необходимо внести поправку D L2.

Фирмы США и некоторые европейские изготовители используют более короткий путь расчета октавных уровней звуковой мощности, излучаемой вентилятором в присоединяемые воздуховоды, с помощью полуэмпирической формулы в виде:

(4)

где LРуд — удельный уровень звуковой мощности в октавной полосе частот, дБ;

p n — полное давление, создаваемое вентилятором, Па;

D Lf — повышающая поправка, дБ, зависящая от типа вентилятора и учитываемая в октавной полосе с лопаточной частотой fл = zn, где z — число лопаток рабочего колеса, n — частота вращения, об/с. Остальные обозначения как в формуле (3).

Как видно, в формуле (4), в отличие от формулы (3), используются не критерии шумности, а удельные уровни звуковой мощности, LРуд, — это уровни звуковой мощности вентилятора в октавных полосах частот, развивающего производительность 1 м 3 /с и полное давление 1 Па. Значения этих удельных уровней звуковой мощности для разных типов вентиляторов, выпускаемых фирмами США, содержатся в справочнике [4].

Вместе с тем в отечественной практике в настоящее время существуют трудности при определении шумовых характеристик вентиляторов. Во-первых, за последние годы изменились типы и конструкции выпускаемых в стране вентиляторов, соответственно, изменились их акустические характеристики (критерии шумности). Во-вторых, с января текущего года прекращено действие СНиП [2]. Новый документ [5] не содержит методический материал, а свод правил к нему, регламентирующий расчет и проектирование шумоглушения вентиляционных установок, пока отсутствует.

Рисунок 5.

Изменение уровня шума шибера в зависимости от степени его закрытия

В НИИСФ данная проблема решается путем использования формулы (4). Для расчета шумовых характеристик отечественных вентиляторов, отличающихся от зарубежных по ряду параметров, в лаборатории защиты от вентиляционного и инженерно-технологического оборудования имеется банк необходимых данных: удельные уровни звуковой мощности наиболее распространенных общепромышленных вентиляторов, поправки на режим их работы и поправки на тональную составляющую на частоте прохождения лопаток.

Спектрограммы шума, LРуд, трех типов центробежных вентиляторов с диаметрами рабочих колес 500—800 мм представлены на рис. 1. Они определены при работе вентиляторов в режиме, близком к h max. При отклонении от режима h max уровень звуковой мощности вентилятора увеличивается на величину, соответствующую этому отклонению, как показано на рис. 2.

Типичные расчетные данные иллюстрирует рис. 3, где сравниваются уровни звуковой мощности центробежного вентилятора ВЦ-14-46-5 (при расходе 15 000 м 3 /ч, давлении 2 500 Па и частоте вращения 0,41 об/с), рассчитанные по формуле (3), (4) и измеренные стандартными методами (паспортные данные).

Расположение вентиляторов

При проектировании малошумных систем вентиляции важно не только точно определять шумовые характеристики, но и правильно выбрать места расположения вентиляторов — основных источников шума систем. В проектируемом здании вентиляторы должны быть расположены в изолированных помещениях (в венткамерах), удаленных от помещений с жесткими акустическими требованиями, а также от лифтовых, вентиляционных шахт и лестничных пролетов, от дверей и окон. На открытых площадках вентиляторы следует удалять от отражающих поверхностей, образующих двух-, трехгранные углы, в места, в которых обеспечивается как минимальное проникновение шума в помещения данного здания, так и его распространение на прилегающую к зданию территорию застройки, в т. ч. селитебную территорию. Выходы воздуховодов (вентиляционных систем) в атмосферу следует располагать таким образом, чтобы излучаемый открытыми концами шум не был направлен на жилые здания и места отдыха. Учет направленности шума часто служит действенной мерой защиты от шума систем вентиляции указанных объектов. Другими словами, правильный выбор ориентации вентиляционного отверстия может без существенных затрат обеспечить допустимые уровни шума в защищаемой от шума зоне.

Рисунок 6.

Изменение уровня шума шибера при приближении его по воздуховоду к вентиляционной решетке (1—6 — расстояния от шибера до вентиляционной решетки в калибрах: 10, 8, 6, 4, 2 и 0,5 калибров соответственно)

Скорость потока воздуха в воздуховодах

После снижения шума вентилятора до требуемого уровня сильнее проявляется шум, генерируемый потоком в элементах воздуховодов. Этот шум обусловлен пульсациями давления и скорости. Он зависит как от скорости набегающего потока, коэффициента местного сопротивления, размеров и конструкции элемента воздуховода, так и от степени турбулентности набегающего на него потока, равномерности поля скоростей в поперечном сечении подводящего к нему воздуховода, месторасположения элемента в сети воздуховодов. Так, при плохих условиях входа потока в воздухораспределительное устройство уровень генерируемого шума может увеличиться на 5—15 дБ [6].

Скорость потока в воздуховодах должна быть ниже предельных значений, после которых возникает повышенный шум. Критерием определения максимально возможной скорости воздуха в воздуховодах могут быть поперечные размеры и минимальная толщина используемого для их изготовления стального листа (табл. [7]).

Поперечные
размеры
воздухо-
водов, мм

Максималь-
ная скорость
воздуха, м/с

Минимальная
толщина
листа, мм

1 200×1 800

Как видно из табл., максимальная скорость 10 м/с допускается в воздуховодах со стенками толщиной 0,6 мм, но при небольшом поперечном сечении; по мере увеличения площади поперечного сечения воздуховодов требуется увеличивать толщину стенок и снижать скорость потока.

К сожалению, авторы не уточняют назначение помещений, зданий, при проектировании которых могут быть использованы эти данные. Магистральные (транзитные) воздуховоды нельзя прокладывать через помещения, к которым предъявляются высокие акустические требования. Это весьма распространенная ошибка проектирования, особенно в театрах, храмах, дворцах и в элитном жилье.

Скорость потока воздуха в глушителях вентиляционных установок

Допустимую скорость воздуха в глушителе как элементе системы вентиляции следует выбирать в зависимости от возможных потерь давления и допустимого уровня звуковой мощности, генерируемого в его проточной части шума. Данные о собственном шумообразовании в глушителях, выпускаемых в соответствии с СНиП [2], содержатся в руководстве [3]. Когда глушитель устанавливается на конечном участке воздуховода (на входе в помещение), то ограничение скорости воздуха может быть связано с допустимыми уровнями звукового давления в обслуживаемых системами помещениях. Для помещений жилых, общественных, административных и производственных зданий эту связь демонстрирует рис. 4. Видно, что при обслуживании, например, зала музыкального театра скорость в концевом глушителе не должна превышать 4 м/с, а офиса — 6 м/с. В свободном сечении центральных глушителей вентиляционных установок допустимая скорость может быть вдвое больше значений, приведенных на рис. 4, но не более 15 м/с, чтобы избежать выдувания из них звукопоглощающего материала.

Влияние дросселирующих устройств на уровень шума

В разветвлениях магистрального воздуховода для обеспечения заданного расхода воздуха в каждой ветке вентиляционной сети устанавливаются дросселирующие устройства. Шумообразование в этих устройствах зависит от их коэффициента местного сопротивления. Уровни шума дроссель-клапана в зависимости от степени открытия (закрытия) заслонки представлены на рис. 5. На нем видно, как по мере закрытия дросселирующего устройства возрастает гидравлическое сопротивление и генерируемый шум. Если требуется дросселирующее устройство с коэффициентом более 5, то лучше установить последовательно несколько устройств, обеспечивающих в сумме необходимое сопротивление [7].

Дросселирующие элементы (шиберы, дроссель-клапаны и т. п.), создающие незамкнутые вихревые зоны в воздуховодах, являются источниками повышенного шума. Необходимо стремиться к тому, чтобы эти вихревые зоны были замкнутыми. Данное условие обеспечивает участок воздуховода между дросселирующим элементом и открытым концом канала (решетки) длиной не менее 8—10 Н, где Н — размер препятствия (длина шибера, проекция на плоскость поперечного сечения дроссель-клапана и т. п.). По мере увеличения расстояния от места установки дросселя до решетки происходит значительное снижение уровня шума (рис. 6) [8].

Как видно на рис. 6, кривые 1, 2 и 3 соответствуют уровням шума при замкнутой вихревой зоне и длине канала за шибером 10, 8 и 6 калибров. По мере размыкания вихревой зоны шум возрастает в низко- и высокочастотных полосах спектра (кривая 4). Это объясняется возрастанием импульсного обмена между основным потоком в канале и разомкнутой вихревой зоной, в которую из вне подсасывается воздух. При этом на кромке канала возникают мелкомасштабные вихри, являющиеся, по всей вероятности, причиной увеличения уровней шума в высокочастотной части спектра. Дальнейшее уменьшение длины канала за шибером до двух калибров увеличивает интенсивность шума в области низких и средних частот; в высокочастотной части спектра уровень шума уменьшается. При длине канала за шибером 0,5 калибра наблюдается спад интенсивности шума и максимум в спектре занимает среднечастотную область. В этом случае полностью размыкается вихревая зона и поток ведет себя как свободная струя.

Влияние воздухозаборных и воздухораспределительных решеток на уровень шума

Высокие скорости в воздухозаборных и воздухораспределительных решетках также являются причиной повышенного уровня шума в помещении. Превышение допустимой скорости движения воздуха на 10 % приводит к повышению уровня шума на 2 дБ. Удвоение допустимой скорости движения воздуха может привести к повышению уровня шума на 10—12 дБ. Подсоединение решеток к воздуховоду должно осуществляться по одной оси. Отклонение от данного требования приводит к повышению уровня шума, которое в ряде случаев может достигать 12—15 дБ. При дросселировании потока направляющими заслонками решетки уровень шума изменяется на 12 дБ [7].

Не рекомендуется на одном воздуховоде устанавливать последовательно более 4—5 воздухораспределителей, т. к. в этом случае давление воздуха перед первым воздухораспределителем может быть настолько высоким, что может возникнуть необходимость в установке дросселирующего устройства с большим коэффициентом местного сопротивления (с большим прикрытием), что неизбежно приведет к увеличению создаваемого им шума.

После того как учтены изложенные выше основные акустические требования и правила проектирования систем вентиляции, необходимо выполнить акустический расчет [3]. Его результатом будет зависимая от частоты величина требуемого снижения шума, которая, в свою очередь, является основой для проектирования шумоглушения, обеспечивающего нормативные требования по фактору шума в местах обитания человека как в зданиях, так и в застройке, включая жилую.

Объем средств и методов борьбы с вентиляционным шумом достаточно большой и продолжает увеличивается. Поэтому в каждой конкретной ситуации важно правильно определить необходимый комплекс, обеспечивающий требуемую эффективность и минимальные материальные затраты на его осуществление. Цель достигается, как правило, в тех случаях, когда проектировщик владеет наиболее полной информацией об объеме и возможностях современных средств и методов борьбы с шумом.

Этим вопросам, как этапам на пути защиты от шума систем вентиляции, будут посвящены статьи, которые предполагается представить для публикации в журнале до конца текущего года.

Литература

1. Центробежные вентиляторы / Под ред. Т. С. Соломаховой. М.: Машиностроение, 1975.

2. СНиП II-12-77. Защита от шума.

3. Руководство по расчету и проектированию шумоглушения вентиляционных установок. М .: Стройиздат, 1982.

4. ASHRAE HANDBOOK. Sound and Vibration Control. 1987.

5. СНиП 23-03-2003. Защита от шума.

6. Снижение шума в зданиях и жилых районах / Под ред. Г. Л. Осипова, Е. Я. Юдина. М.: Стройиздат, 1987.

7. Системы вентиляции и кондиционирования. Теория и практика. М.: Евроклимат, 2000.

8. Лешко М. Ю. Влияние присоединенного воздуховода на шум, создаваемый регулирующим шибером // Сб. науч. тр. М.: НИИСФ, 1979.

Выбор скорости воздуха в воздуховодах систем вентиляции, кондиционирования, аспирации и противодымной защиты

The ventilation network is the main part of any ventilation, air conditioning and aspiration system and includes air ducts, fittings and network equipment. There are no regulatory documents for determining the optimal air speed in air ducts, since the range of speed selection is wide and depends on many individual factors of the network, including: the category of the building, the purpose of the room, the material and shape of the duct, the presence of insulation in the network, shaped elements, throttling and adjusting devices and many other conditions. To increase the efficiency and quality of the design work performed, it is necessary to expand the search for an algorithm for choosing the optimal air velocity in air ducts for the main types of buildings and premises and to develop standard solutions for practical use.

Описание:

Вентиляционная сеть является основной частью любой системы вентиляции, кондиционирования воздуха и аспирации и включает воздуховоды, фасонные элементы и сетевое оборудование. Нормативных документов по определению оптимальной скорости воздуха в воздуховодах нет, т. к. диапазон выбора скоростей находится в широких пределах и зависит от многих индивидуальных факторов сети, в том числе: категории здания, назначения помещения, материала и формы воздуховода, наличия в сети изоляции, фасонных элементов, дроссельных и регулировочных устройств и многих других условий.

Для повышения оперативности и качества выполняемых проектных работ необходимо расширить поиски алгоритма выбора оптимальных скоростей движения воздуха в воздуховодах для основных видов зданий и помещений и разработать стандартные решения для практического применения.

Ключевые слова: аэродинамический шум, воздуховод, аэродинамический расчет, скорость воздуха

Выбор скорости воздуха в воздуховодах систем вентиляции, кондиционирования, аспирации и противодымной защиты

В. Н. Боломатов, инженер, Почетный строитель РФ

Вентиляционная сеть (далее воздуховод) является основной частью любой системы вентиляции, кондиционирования воздуха и аспирации и включает воздуховоды, фасонные элементы и сетевое оборудование. Нормативных документов по определению оптимальной скорости воздуха в воздуховодах нет, т. к. диапазон выбора скоростей находится в широких пределах, от 0,3 до 30,0 м/с, и зависит от многих индивидуальных факторов сети, в т. ч.: категории здания, назначения помещения, материала и формы воздуховода, наличия в сети изоляции, фасонных элементов, дроссельных и регулировочных устройств и многих других условий. В настоящее время источником выбора являются ведомственные рекомендации или справочники, которые разработаны в 1965–1970 годах и в основном для минимальных скоростей, обеспечивающих потери давления в сетях, которые могут быть компенсированы типовыми, относительно дешевыми вентиляторами низкого или среднего давления, и не подтверждены конструктивной и экономической целесообразностью. Кроме того, рекомендуемые низкие скорости «перенасыщают» производственные здания воздуховодами больших размеров или не могут обеспечить приемлемую степень заполнения воздуховодами дорогостоящего объема зданий жилого или общественного назначения. Рассмотрим воздуховоды некоторых систем, наиболее часто встречающиеся в практике проектирования.

Воздуховоды. Общие сведения

Конструирование сети, как правило, начинают с составления аксонометрической схемы системы с обязательным указанием пространственного расположения воздуховодов, длины каждого участка сети при заданных расходах по участкам и выбранной скорости воздуха в воздуховодах, по которым далее определяются сечения воздуховода и потери давления. Скорость следует именно рассчитать, выбрать ту скорость движения воздуха, которая представляется оптимальной для конкретной системы, руководствуясь соображениями конструктивной и экономической целесообразности.

Воздуховоды и фасонные элементы проектируются из унифицированных стандартных деталей [1]. Воздуховоды могут быть прямоугольной или круглой формы и, как правило, изготавливаются из металла. Если применяются воздуховоды или каналы из других материалов, при расчетах необходимо учитывать поправку на эквивалентную шероховатость стенок воздуховода.

Прямоугольные воздуховоды вследствие их низких аэродинамических характеристик, высокой стоимости изготовления и монтажа проектируются при обосновании и применяются при ограниченном пространстве шахт или подшивных потолков в общественных или жилых зданиях. При проектировании нестандартных сечений соотношение сторон для воздуховодов прямоугольных сечений не должно превышать 1:4 [2]. При проектировании системы вентиляции с естественным удалением воздуха воздуховоды выполняют с соотношением сторон не более 1:2.

Круглые воздуховоды более объемны, но имеют лучшие аэродинамические показатели, низкий уровень аэродинамического шума воздушного потока, технологичны при изготовлении и монтаже и широко применяются в строительстве. Для взаимозаменяемости прямоугольных и круглых воздуховодов используют термин эквивалентного диаметра, определяемого по зависимости:

Эквивалентный диаметр прямоугольного воздуховода – это диаметр условного воздуховода, в котором потери давления на трение равны. На практике при конструировании систем вентиляции, кондиционирования и аспирации предпочтение следует отдавать воздуховодам круглого сечения. Аэродинамический расчет системы вентиляции проводят с помощью специализированных программ или таблиц справочных источников [3, 4]. Расчет по методу динамических давлений может выполняться и по диаграммам (рис. 1). Погрешность расчета по диаграммам не превышает 3–5 %, что достаточно для некоторых расчетов. Если перемещается воздух с температурой выше 50 °C, при расчетах необходимо учитывать соответствующую поправку.

Воздуховоды систем с естественным побуждением

При выборе скорости воздуха определяющим является источник побуждения – ветровой или гравитационный.

Для ветровых систем при использовании дефлектора и расчетном напоре 5,0–6,0 Па скорости воздуха, по данным многочисленных источников, в т. ч. [8], принимают в пределах 1,0–1,5 м/с.

Для гравитационных систем при тепловом перепаде Δt = 5 °C и располагаемом давлении 3,0–4,0 Па скорости воздуха, по данным разнообразных справочников, в т. ч. [9], принимают в пределах 0,5–1,5 м/с. В магистральных вытяжных шахтах зданий от четырех до 12 этажей оптимальная скорость при расчетном напоре более 6,0 Па может достигать 2,0 м/с. Диапазон скоростей для отдельных участков рекомендуется принимать по табл. 1.

Для зданий высотой более 12 этажей или при расчетном тепловом перепаде более Δt = 6 °C следует проводить расширенный расчет.

Системы с механическим побуждением. Общие сведения

При разработке вентиляционных систем с механическим побуждением используют метод допустимых скоростей или метод динамических давлений. При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают расчетную оптимальную скорость воздуха. Далее определяют сечение участков (диаметр или размер сторон) и потери давления в вентиляционной сети. Метод применяется на стадии создания рабочих чертежей. При конструировании сети воздуховодов по методу динамических давлений за исходные данные принимают потери давления в вентиляционной сети. Далее устанавливают скорость воздуха и принимают сечение участков. Метод предполагает постоянную потерю напора на погонный метр воздуховода, на основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост, является ориентировочным расчетом и применяется при разработке схем на стадии проекта или технико-экономического обоснования.

Воздуховоды систем жилых и общественных зданий

При выборе скорости воздуха в воздуховодах определяющей становится величина скорости, которая принимается исходя из акустических ограничений. При расчете уровней шума систем вентиляции, кондиционирования воздуха и воздушного отопления в помещении учитывается не только шум от скорости движения воздуха в воздуховодах, но и возможное снижение уровня звуковой мощности в элементах сети. Скорость воздуха в воздуховодах – основная причина аэродинамического шума, возникающего на линейных участках, ответвлениях, регулирующих устройствах и других компонентах систем. Уровень аэродинамического шума в воздуховоде пропорционально зависит от скорости воздуха и вычисляется по формуле:

где Lw – уровень звуковой мощности, дБ;

v – скорость воздуха, м/с;

A – площадь поперечного сечения воздуховода, м 2 .

Техническая задача проектировщика – выбрать скорость в воздуховодах таким образом, чтобы соблюдались как оптимальные скорости, так и предельно допустимые уровни шума для соответствующих помещений, т. е. найти компромисс между уровнем шума и скоростью воздуха в воздуховоде. Диапазон скоростей с допустимым уровнем шума в помещениях находится в пределах 3–5 м/с, в воздуховодах шахт и технических помещений – 6–9 м/с. В табл. 2 приведены скорости движения воздуха в воздуховодах с учетом особенностей установки и назначения помещения. В качестве справочного источника по акустическому расчету систем вентиляции жилых и общественных зданий используется [4]. Расчет воздуховодов и выбор скорости воздуха в воздуховодах систем жилых зданий рекомендуется выполнять по [5].

В статье А. Л. Наумова, О. С. Судьиной «Оптимизация проектирования и энергоэффективность трубопроводных сетей инженерных систем здания» (АВОК, № 4, 2009) рассматривалась проблема выбора оптимальных скоростей движения рабочей среды в трубопроводных сетях с учетом экономической целесообразности. Авторы статьи отмечали, что «Стремясь минимизировать затраты на трубопроводы и сетевые элементы, а также сэкономить полезный объем здания, проектировщики, как правило, принимают рабочие скорости среды, близкие к максимально допустимым, производительность насосов и вентиляторов с хорошим запасом. А запас этот действительно необходим, так как прямые линии трассировок в проекте трансформируются в причудливые «загогулины», обходящие выступы, балки, колонны при реальном монтаже.

Нередко возникает необходимость из-за высоких скоростей воздуха в системах вентиляции устанавливать дополнительные шумоглушители, тем самым увеличивая еще больше аэродинамическое сопротивление сети».

В статье проанализировано изменение энергетических и экономических показателей трубопроводной сети при изменении средней скорости движения рабочей среды и показано, что экономически оптимальная скорость движения рабочей среды соответствует минимально допустимым скоростям. А учитывая, что до 80 % электроэнергии в системах жизнеобеспечения зданий приходится на привод насосов и вентиляторов, оптимизация гидравлических и аэродинамических режимов работы инженерных систем позволит радикально снизить энергоемкость зданий при сравнительно небольших затратах.

Воздуховоды систем складов и производственных зданий

Для современных складов и цехов принято проектировать системы с механическим побуждением. Вентиляционное оборудование и воздуховоды складов и производственных зданий, как правило, размещаются в пределах объема здания или на прилегающих территориях, причем скорость движения воздуха в воздуховодах ничем не ограничивается, кроме конструктивной и экономической целесообразности. При проектировании приточных и вытяжных систем складов и цехов целесообразно указывать в техническом задании диапазон скоростей движения воздуха в воздуховодах, в т. ч. и помещений, где шум вентиляционной установки не должен усиливать уровень общего производственного шума. Рекомендованная скорость движения воздуха для различных помещений складов и производственных зданий приведена в табл. 3.

Воздуховоды местных систем и аспирации

При расчете воздуховодов вентиляционных систем используют метод допустимых скоростей или метод динамических (скоростных) давлений. Метод динамических давлений принимается, если концентрация пыли превышает 0,01 кг/кг. При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха. Сети местных систем и аспирации, как правило, короткие, местных сопротивлений немного, целесообразно применять более высокие скорости, чтобы сократить расход металла на вентиляцию и не «перенасыщать» интерьер цеха воздуховодами больших размеров. Кроме того, в местных системах и системах аспирации скорость на участках не может быть меньше скорости «витания» транспортируемого материала, во избежание выпадения переносимой воздушным потоком примеси в воздуховодах. При расчетах необходимо обеспечить нарастание скорости движения воздуха от воздуховода местного отсоса до выброса. Невыполнение этих требований создаст условия для накопления пыли в отдельных участках сети и как следствие – для взрыва или пожара. Скорость движения воздуха в воздуховодах находится в диапазоне 15–30 м/с. Расчет воздуховодов для некоторых местных систем выполняется по [6], систем аспирации по [7] или другим ведомственным справочным источникам по проектированию вентиляции производственных зданий. Рекомендованные скорости движения воздуха в воздуховодах для различных участков и видов транспортируемый пыли приведены в табл. 4.

Воздуховоды систем противодымной вентиляции

Скорости движения воздуха в воздуховодах систем подпора или дымоудаления находятся в диапазоне 15–25 м/с. Следует отметить, что при расчетах систем дымоудаления вместо скорости воздуха используется массовая скорость смеси дыма и воздуха, которая существенно ниже вследствие значительной разности плотности воздуха при температуре помещения и дымовых газов по участкам сети. Рекомендованные массовые скорости дымовых газов для различных воздуховодов при температуре дымовых газов 300 °C приведены в табл. 5. Расчет воздуховодов систем дымоудаления выполняется по [10]. В качестве справочного источника используется [11].

Вывод

Для повышения оперативности и качества выполняемых проектных работ необходимо расширить поиски алгоритма выбора оптимальных скоростей движения воздуха в воздуховодах для основных видов зданий и помещений и разработать стандартные решения для практического применения.

Литература

1. ВСН 353-86. Проектирование и применение воздуховодов из унифицированных деталей. – 1986.

2. СП 60.13330.2016. Отопление, вентиляция и кондиционирование воздуха.

3. Идельчик И. Е. Справочник по гидравлическим сопротивлениям. – М.: Машиностроение, 1992.

4. СП 271.1325800.2016. Системы шумоглушения воздушного отопления, вентиляции и кондиционирования воздуха. Правила проектирования.

5. СТО СРО НП СПАС-05-2013. Расчет и проектирование систем вентиляции жилых многоквартирных зданий.

6. Рысин С. А. Вентиляционные установки машиностроительных заводов. Справочник. Изд. 3-е, перераб. – М.: Машиностроение, 1964.

7. Рекомендации по проектированию систем аспирации.

10. СП 7.13130.2013. Отопление, вентиляция и кондиционирование. Требования пожарной безопасности.

11. МДС 41-1.99. Рекомендации по противодымной защите при пожаре.

Please wait.

Поделиться статьей в социальных сетях:

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.

Подпишитесь на наши статьи и вы будете узнавать свежие новости и получать новые статьи одним из первых!

Статья опубликована в журнале “АВОК” за №3’2021

распечатать статьюраспечатать статью —> PDFpdf версия

Обсудить на форуме

Обсудить на форуме

Предыдущая статья

Следующая статья

Статьи по теме

  • Определение сечения воздуховодов методом компенсации статического давления
    АВОК №2’2023
  • Способы снижения шума осевых вентиляторов
    АВОК №1’2013
  • Толщина стали воздуховодов: война экономики и физики
    АВОК №1’2022
  • Защита окружающей среды от шумового воздействия оборудования систем ОВК
    АВОК №2’2014
  • Рекомендации по снижению аэродинамического шума в вытяжных вентиляционных системах
    АВОК №2’2023
  • Акустические требования и правила проектирования малошумных систем вентиляции
    АВОК №4’2004
  • Опыт снижения шума фэнкойлов в номерах гостиниц
    АВОК №1’2012
  • Проблемы вентиляции высотных офисных зданий
    АВОК №4’2023
  • Пристенные вентиляторы дымоудаления
    АВОК №7’2012
  • Инженерные системы многофункциональных жилых комплексов: рекомендации эксперта
    АВОК №6’2023
  • Библиотека статей
  • Комитет АВОК по техническому нормированию
  • Каталог компаний
  • Экскурсия на производство
  • Произведено за рубежом — доступно в России
  • Полезные сервисы инженерам
  • Технический комитет 474
  • Нормативные документы
  • Рынок инженерного оборудования
  • Каталог примеров расчетов
  • Календарь выставок

Проблемы шума в системах распределения воздуха

Одним из недостатков систем распределения воздуха является шум и вибрация. Предметом изучения автора стали некоторые аспекты данной темы, в частности, вентиляторы, скорость воздуха в воздуховодах, системы с переменным расходом воздуха, крышные установки.

Зачастую системы распределения воздуха создают немалые проблемы с точки зрения акустики в силу того, что использование вентиляторов большой мощности и высокая скорость движения воздуха по воздуховодам генерируют шум и вибрацию.

Вообще говоря, проблему шумности следует рассматривать уже на этапе проектирования систем распределения воздуха, поскольку на готовом объекте проводить корректирующие действия всегда сложнее и дороже.

Для того чтобы проектируемая система распределения воздуха имела хорошие показатели по акустике, полезно будет учесть следующие обстоятельства: описываемый феномен обусловлен одновременным наличием источника шума, средств передачи и приемника. Источниками шума являются механические и электрические устройства: вентиляторы, компрессоры, насосные агрегаты, а также диффузоры, решетки, клапаны. Все они генерируют шум, распространяющийся по воздуховодам через структуру самого сооружения и различными путями поступающий к приемнику, иначе говоря, к людям, находящимся в здании (рис. 1).

Пути распространения шума от источника к приемнику:
1 – шум, передаваемый через структуру сооружения – полы; 2 – шум, передаваемый воздушным путем через систему подачи воздуха; 3 – шум, генерируемый в трубопроводной сети; 4 – шум, передаваемый воздушным путем через систему возврата воздуха; 5 – шум, передаваемый через структуру сооружения – стеновые конструкции; 6 – источники шума; 7 – приемник

С точки зрения акустики такие источники шума помимо мощности и направленности характеризуются также спектром излучения, который может содержать низкочастотные либо высокочастотные колебания, тоновые или широкополосные, непрерывного типа либо изменяющиеся во времени.

Важно проанализировать с точки зрения спектра излучения все узлы используемого оборудования, поскольку, во-первых, низкочастотный шум регулировать сложнее, чем шум средних и высоких частот, а во-вторых, чистые тона и изменяемость во времени делают шум особенно неприятным (рис. 2).

По результатам исследований, проведенных в 1990-х годах в Великобритании и Швейцарии, низкочастотный шум (до 200 Гц), излучаемый вентиляционным оборудованием и системами кондиционирования воздуха, непосредственно влияет на самочувствие людей и существенно снижает трудоспособность. Характерными симптомами являются повышенная утомляемость, затруднения с концентрацией внимания, головная боль.

Таким образом, технической задачей является разработка проекта системы распределения воздуха таким образом, чтобы в помещении соблюдались как расчетные показатели, так и предельно допустимые уровни шума. Ниже мы подробнее рассмотрим некоторые аспекты проблемы шумности в системах распределения воздуха.

Рисунок 2. (подробнее)

Рисунок 3. (подробнее)

Вентиляторы

От того, насколько тщательно будут рассчитаны параметры системы вентиляции и правильно произведена установка оборудования, в значительной степени зависит качество системы воздухоподготовки и вероятность последующих корректирующих действий по снижению шумности работы агрегатов.

Поскольку мощность звукоизлучения вентиляторов определяется механической мощностью, при проектировании системы распределения воздуха необходимо минимизировать препятствия на пути движения потока. Вентиляторы следует выбирать с наименьшими показателями акустической мощности при прочих равных аэродинамических характеристиках.

Акустическая мощность может быть рассчитана, например, по формуле:

LW = 10logV + 20log∆P dB в зависимости от объемного расхода V , м 3 /ч, и полного давления ∆P , Па.

Следует, тем не менее, подчеркнуть, что результат решения данного уравнения будет иметь достоверность с допускаемым отклонением в пределах ±4 дБ. Уточнить данные можно непосредственно у производителей оборудования, особенно, если испытания проводятся согласно требованиям действующих нормативов. Наибольшее значение имеют те данные по звукоизлучению агрегатов, которые позволяют определить акустическую мощность вентиляторов на сети воздуховодов. Как правило, предоставляются данные об уровне звуковой мощности устройства, а также повышающие коэффициенты для определения частотного спектра звукоизлучения на всасывающем и подающем патрубках вентилятора.

Разные типы вентиляторов дают различное звукоизлучение, и шумность агрегатов в пределах одной категории определяется различными факторами. Чаще всего, если вентилятор подобран для работы в условиях наивысшей аэродинамической эффективности строго в соответствии с расчетными показателями напора и расхода воздуха и с точки зрения акустики, его рабочие параметры будут неплохими. Снижение эффективности даже на несколько процентов из-за того, что разработчик «перебрал» или «недобрал» в части расчетных параметров, может вдвое увеличить уровень звукоизлучения системы (+3 дБ).

Говоря о двух наиболее распространенных типах вентиляторов – центробежных и аксиальных (осевых), следует отметить, что звуковой спектр последних достаточно ровный, а первые дают снижение шума порядка 4–6 дБ на октаву. Для центробежных вентиляторов характерным является генерирование и распространение низкочастотного шума. Аксиальные (осевые) вентиляторы, будучи несколько тише на низких частотах по сравнению с центробежными вентиляторами той же мощности, гораздо более шумные на высоких частотах (рис. 3).

Правильный выбор типа вентилятора и его рабочей точки дает возможность регулировать в определенных пределах спектральные составляющие излучаемого шума, соответствующие той или иной частоте и ей кратным, определяемым умножением скорости вращения рабочего колеса на число лопаток. Центробежные вентиляторы с лопатками, загнутыми вперед, применяемые во многих кондиционерах, на низких частотах генерируют характерный гул, особенно когда рабочая точка левее точки максимальной производительности. Центробежные вентиляторы с лопатками, загнутыми назад, либо с крыльчатым профилем (притом, что их энергетическая эффективность намного выше), как правило, все-таки более шумные, чем такие же вентиляторы с лопатками, загнутыми вперед, в частности, в указанной выше полосе частот, находящейся, к сожалению, в диапазоне, смягчить который весьма проблематично. В полосах ниже и выше такие вентиляторы тише вентиляторов с лопатками, загнутыми вперед.

Аксиальный вентилятор по сравнению с любым другим вентилятором, при аналогичных заданных параметрах давления и производительности, генерирует меньше шума на низких частотах. С акустической точки зрения это обстоятельство имеет большое значение, поскольку гораздо труднее бороться с низкими частотами, чем с высокими.

Рисунок 4. (подробнее)

Скорость воздуха в воздуховодах

Скорость перемещения воздуха является причиной аэродинамического шума, главным образом на изогнутых участках, ответвлениях, регулирующих заслонках и других компонентах систем распределения воздуха. Поэтому рекомендуется избегать резкой смены сечения воздуховодов. Вообще говоря, их следует постепенно наращивать с углом расширения не более 15°. В противном случае на таких участках вероятно отделение воздушного потока от плоскости трубопровода, что резко повышает шумность. Соединения в зонах ответвлений либо изгибов следует оформлять очень мягко. И, наконец, необходимо, чтобы скорость воздуха была как можно ниже, поскольку чем она ниже, тем ниже аэродинамический шум в воздуховоде: его уровень снижается пропорционально снижению скорости воздуха. С учетом параметров воздуховодов, особенностей установки и назначения помещения рекомендуется не превышать показатели скорости воздуха, приведенные в таблице.

Скорость воздуха (м/с)
Прямоугольные
воздуховоды
Круглые
воздуховоды
Над
подвесным
потолком
Непосред-
ственно в
помещении
Над
подвесным
потолком
Непосред-
ственно в
помещении
Складские помещения, санузлы, коридоры 12,7 10,2 22,9 19,8
Конференц-залы, банкетные залы, учебные классы, административные помещения 8,9 7,4 15,2 13,2
Кабинеты, специальные номера в гостиницах, палаты в больницах, специальные театральные ложи, библиотеки 6,1 4,8 10,2 8,6

В том случае если речь идет о помещениях с особыми требованиями к акустике, регулирующие заслонки и аналогичные устройства нельзя устанавливать на участке непосредственно перед воздухораспределительным устройством. Расстояние между ними должно быть не менее 5–10 диаметров, при этом данный участок обязательно закрывается звукопоглощающими панелями.

Воздухораспределительные устройства вентиляционных систем (как правило, диффузоры и решетки) необходимо подбирать с таким расчетом, чтобы генерируемый шум был приемлемым с учетом непосредственного назначения помещения, где их намереваются установить. За основу здесь можно взять данные, предоставляемые производителем. Однако следует помнить, что производитель осуществляет замеры в режиме плавного изменения скорости воздуха в патрубке воздухораспределительного устройства (диффузора или решетки). Если непосредственно перед этим устройством предусматривается изгиб либо установлена регулирующая заслонка, поток воздуха будет характеризоваться завихрениями, из-за чего фактический уровень шума может быть существенно выше (с превышением номинальных показателей до 12 дБ). И тогда придется ставить в воздуховоде перед диффузором стабилизирующую решетку для выравнивания потока воздуха.

Системы с переменным расходом воздуха (VAV-системы)

Системы с переменным расходом воздуха в силу возможности изменять транспортируемые его объемы, безусловно, позволяют уменьшить энергопотребление, но при этом приводят к значительному увеличению уровня шума вентилятора. Во избежание проблем проектировщику придется с большей тщательностью, нежели того требуют системы с постоянным расходом воздуха, отнестись к расчету сети воздуховодов, систем регулирования статического давления, равно как и к выбору самого вентилятора или кондиционера и соответствующих систем регулирования расхода воздуха.

Как и для других систем, для систем с переменным расходом воздуха сети воздуховодов должны проектироваться таким образом, чтобы потери статического давления были минимальными, особенно на участках трубопровода вблизи вентилятора либо собственно кондиционера.

Вообще в системах с переменным расходом воздуха проблемы повышенных уровней шума чаще всего обусловлены некорректным регулированием системы распределения воздуха. Классический пример – регулирование только посредством позиционирования заслонок без изменения (уменьшения) скорости вращения рабочего колеса вентилятора. В этом случае в сети воздуховодов, где ни одна из заслонок не открыта до конца, вентилятор будет работать в условиях большего статического давления по сравнению с тем, которое ему фактически необходимо. Полностью открыв либо вообще убрав регулирующие заслонки, мы избавимся от шума.

С точки зрения уровней шума выбор вентилятора для системы с переменным расходом воздуха представляется более трудным, чем для системы с постоянным расходом воздуха.

В системе с постоянным расходом воздуха вентилятор выбирается с расчетом на работу с наивысшей производительностью при заранее определенном расходе воздуха. Для систем с переменным расходом воздуха, напротив, вентиляторы выбираются с расчетом на стабильное функционирование в пределах всего рабочего диапазона. Обычно вентиляторы выбираются для работы с максимальной производительностью на 70–80 % максимального пропускного объема (расхода). В этом случае при фактическом недоборе по отношению к максимальной производительности при 100%-м расходе вентилятор будет более шумным. Но рост уровня шума с превышением до 5 дБ еще может считаться приемлемым. А вот вентилятор с завышенными расчетными параметрами может дать потерю скорости при срыве потока. И здесь рост уровней шума пойдет в основном в полосе низких частот, а это весьма неприятно.

Регулирование расхода воздуха в VAV-системах можно осуществлять следующим образом:

1. Устанавливать регуляторы расхода воздуха с поворотными лопатками на всасывающий патрубок либо регулирующие заслонки на нагнетательный патрубок вентилятора. При этом меняются рабочие параметры вентилятора и, соответственно, сдвигается диаграмма зависимости давление-расход. Регуляторы расхода с поворотными лопатками на всасывающем патрубке позволяют регулировать расход воздуха путем изменения воздушного потока на входе в вентилятор. В этом случае расход воздуха и давление вентилятора меняются даже при неизменной скорости вращения. Это ведет, с одной стороны, к снижению шума в воздуховодах вследствие снижения скорости и давления пропускаемого в них воздуха, с другой стороны – к росту уровня шума самого вентилятора вследствие турбулентности и деформации воздушного потока в регулирующих устройствах, препятствующих всасыванию вентилятора.

В центробежных вентиляторах с лопатками крыльчатого профиля, где регуляторы установлены внутри всасывающего патрубка, звуковой уровень характерной частоты при прохождении через лопатки увеличивается с 2 до 8 дБ в зависимости от снижения расхода воздуха. Рост может быть незначительным (в пределах 2–3 дБ) на установках наружного типа. И, наконец, у вентиляторов с загнутыми вперед лопатками эти показатели обычно меньше на 1–2 дБ.

У вентиляторов аксиального типа регуляторы дают рост уровней шума на низких частотах от 2 до 8 дБ при положении, когда регулятор перекрывается в пределах от 25 до 50 %.

2. Устанавливать вентиляторы аксиального типа с переменным шагом и изменяемым углом поворота лопаток, что позволяет повысить производительность в режиме установленного расхода воздуха. При сокращении расхода от 80 до 40 % от номинального уровни шума вентилятора снижаются в пределах от 2 до 5 дБ по всему частотному диапазону от 125 до 4 000 Гц.

3. Устанавливать вентиляторы с электрическим приводом, обеспечивающим постоянное регулирование скорости вращения. Снижение скорости вращения вентилятора дает снижение излучаемой звуковой мощности ∆LW , рассчитываемой при помощи следующего уравнения:

где n2 – уменьшенная скорость вращения относительно n1 .

Регулирование скорости вращения рабочего колеса вентиляторов осуществляется воздействием на двигатель путем электронного регулирования частоты электропитания при помощи устройств, которые, к сожалению, повышают общий уровень шума. Чаще всего это устройства типа CSI (инвертор, работающий в качестве источника тока), VSI (инвертор, работающий в качестве источника напряжения) и PWM (инвертор с модуляцией амплитуды импульсов). Наименее шумными считаются CSI и PWM третьего поколения. В любом случае уровни шума двигателя обуславливаются парой двигатель/регулятор, равно как и качеством обмотки. На самом деле двигатель излучает чистый тон, интенсивность которого зависит от неровности формы волны тока питания.

В целом можно сказать, что установка на всасывающем патрубке регуляторов расхода с поворотными лопатками либо регулирующих заслонок на нагнетании вентилятора может повысить шумность системы при работе в режиме сокращенного расхода, тогда как при использовании вентиляторов с переменным шагом лопаток либо регулированием скорости вращения в режиме сокращенного расхода система будет работать тише, чем при максимальной производительности.

Устройства воздухоподготовки крышного типа

Обычно такие системы очень шумные и дают большую вибрацию. Причины – близость установок к обслуживаемому объекту, ошибки строительно-монтажного проекта, недостаточная виброзащищенность конструкций, неэффективность вентиляторов, ошибки расчета воздуховодов.

Корректный расчет данного типа оборудования может существенно снизить функциональные шумы воздуховодной сети. Следует учитывать, что крышные установки зачастую монтируются на легких перекрытиях, в которых проделываются широкие проемы для организации сети подачи и отвода воздуха. Посредством этих воздуховодов крышная станция воздухоподготовки напрямую соединяется с кондиционируемыми помещениями. Нередко никаких специальных мероприятий по звукоизоляции и виброзащите не проводится вообще. Да и пространства для таких материалов не оставляется. При работе с установками крышного типа главное и основное правило: станцию располагают на участке, где акустическое воздействие на нижние помещения не является критичным: складские помещения, коридоры, санузлы, любые зоны, где нет постоянных посетителей.

Шумы, излучаемые станциями воздухоподготовки крышного типа, как правило, распространяются по следующим направлениям (рис. 4):

1. По воздуху от нижней части устройства кондиционирования в направлении обслуживаемых помещений. Такие шумы, генерируемые различными компонентами внутри шкафа агрегата воздухоподготовки, через стены идут в помещение снизу, как правило, непосредственно через подающий и отводящий воздуховоды. Поэтому рекомендуется проемы для них устраивать на достаточном расстоянии от обслуживаемых помещений и после прокладки конструктивных элементов для транспортировки воздуха тщательно заделывать их изолирующим составом. Для снижения шума, передаваемого по воздуху, рекомендуется саму крышную установку подготовки воздуха также монтировать на некоторой высоте от сечений воздуховодов в крышном перекрытии. Кроме того, опять-таки для снижения уровней шума в сети необходимо должным образом изолировать прямолинейные участки воздуховодов, параллельные перекрытию.

2. Через структуру здания. Вибрации генерируются отдельными компонентами агрегатов воздухоподготовки. Такие компоненты рекомендуется тщательно изолировать вибропоглощающими материалами.

3. Через подающие воздуховоды. Шумы здесь генерируются турбулентностью, чаще всего на участке у приточного патрубка вентилятора, а также у первого поворота воздуховода. Это, как правило, низкочастотные грохочущие шумы, и приглушить их довольно затруднительно. Можно рекомендовать прокладку воздуховода в вентиляционном коробе с подходящими акустическими параметрами.

4. Через вытяжные воздуховоды. Для уменьшения шума можно разделить такой воздуховод на несколько каналов, каждый из которых следует тщательно изолировать звукопоглощающим материалом (минимальная толщина слоя 25 мм), а также установить глушители либо использовать звукопоглощающие короба.

Перепечатано с сокращениями из журнала «CDA».

Перевод с итальянского С. Н. Булекова.

Научное редактирование выполнено В. Д. Коркиным – зав. кафедрой СПб ГАИЖСА им. И. Е. Репина.

Как избавиться от шума вентиляции?

Вентиляция – важнейший элемент всего комплекса вспомогательных систем, направленных на создание комфортных и безопасных условий пребывания человека в жилом или рабочем помещений, скота на животноводческой ферме и IT-электроники в серверных комнатах. Основной задачей вентиляции считается обеспечение качественного воздухообмена. Однако, иногда из-за допущенных просчетов при проектировке и установке вентиляционного оборудования, а также использования низкокачественных исходных материалов в работе всей системы возникает громкий шум, который создает дискомфорт.

Источники появления шума в вентиляции бывают разные, как и методы его устранения.

Нормативно допустимый уровень шума

Параметрами звука, по уровню шумности, который можно отнести к звуку создающий дискомфорт, определяющими являются такие характеристики, как частота и сила. Будет неправильным считать, что только очень громкий звук способен причинить тот или иной вред человеку. Дело в том, что даже монотонный слабый шум в 70 – 80 дБ с частотой до 5 кГц может привести к появлению головной боли, снижению работоспособности, возникновению невроза. Это характерно и для животных, производительность которых от постоянного шума существенно снижается.

В соответствии с существующими нормативными требованиями, которые отражены в СНиП 23-03-2003 и СН 2.2.4/2.1.8.562-96, а также нормативно-правовых актах субъектов Российской Федерации допустимым уровнем шума является:

Для жилых помещений:

  • категории А в период с 7.00 до 23.00 составляет 35 дБ; с 23.00 до 7.00 составляет 25 дБ, что эквивалентно фоновому уровню шума в городской среде;
  • категорий Б и В, в период с 700 до 2300 составляет 40 дБ; с 2300 до 700 составляет 30 дБ.

Для производственных помещений:

  • круглосуточно – до 80 дБ.

Замер уровня шума в том или ином помещении производится при помощи специального прибора – шумомера. Следует учесть тот факт, что работу вентиляционных систем в любом случае будет сопровождать посторонний звук.

Источники шума

Основные причины возникновения посторонних звуков в вентиляционной системе:

  1. Ошибки при подборе сечений воздуховодов и их нецелесообразное зауживание. Просчеты в подборе мощности вентиляционной установки. Установка не соответствующих общей системе воздухораспределительных устройств.
  2. Ошибки при установке. Отсутствие профильного образования и опыта установки вентиляционных систем велика вероятность допустить ошибку во время проведения монтажных работ.
  3. Низкое качество материалов. Качество материала должно соответствовать установкам, которые заложены при проектировке всего оборудования.

По своему характеру шум в вентиляции может быть механическим или аэродинамическим.

Основными источниками шума являются:

Воздуховоды. Использование низкокачественных воздуховодов, сделанных из тонкой стали, с невыдержанной технологией производства приводит к возникновению вибраций при прохождении воздушных масс. Как результат, появляется гул и глухой шум. Частой сопутствующей проблемой использования второсортных воздуховодов является выпадение соединительных и уплотнительных резинок, что также приводит к появлению постороннего звука.

Вентиляционная установка. Самые распространенные источники:

  • Подшипники. Их износ приводит к появлению скрежета и хруста.
  • Виброизоляторы предназначены для создания амортизации нагрузки. Чаще всего их изготавливают из резины или делают металлическими пружинными. При длительной работе виброизоляторы изнашиваются, теряют свои технические свойства, что приводит к появлению шума, который проявляется гулом и вибрацией всей конструкции.
  • Гибкие вставки. Гибкие вставки или вибровставки используются в качестве соединительного элемента вентиляционной установки и воздуховода. Изготавливаются они обычно из брезента или другой ткани, которая со временем изнашивается или получает повреждения. При наличии дырок или щелей в гибких вставках, воздух, проходя через них под высоким давлением, сопровождается громким свистом.
  • Рабочее колесо вентилятора. Причиной громкого звука при работе колеса вентилятора является перепад давления воздуха на рабочей поверхности лопаток и срыв воздушного потока с лопастей. Этот процесс естественен и неизбежен. Производители вентиляционных систем компенсируют шум работы вентилятора за счет точного расчета лопастей лопаток. Однако, неправильно подобранный вентилятор в соотношении производительности вентиляционной установки и сечения воздуховодов многократно усиливает шум.

Клапаны, шиберы, решетки. Одной из самых распространенных причин шума появления шума в системе вентиляции является неправильно установленные фасонные части воздуховодов, клапаны, шиберы и вентиляционные распределительные устройства. Такой шум похож на свист и появляется в тех местах, где происходит резкое заужение сечений воздуховодов.

Изоляция воздуховодов. Наличие аэродинамического шума – это естественный и неизбежный процесс. Единственным способом борьбы с ним является выполнение работ по шумоизоляции воздуховодов, особенно в местах постоянно прибывания людей (офисы, квартиры, больницы и т.д.). Собственно, нормативно допустимая толщина шумоизоляции варьируется от 0,3 мм до 1,5 см, что дает возможность нерадивым монтажникам использовать более тонкие слои, чем предусмотрел проектировщик. При выполнении больших объемов работ это существенно экономит материал и повышает шум работы всей вентиляционной системы.

Шумоглушители. Очень часто их просто нет или они уже сломаны (пробиты) или в них попал посторонний предмет.

Способы устранения шума в вентиляции

Для того чтобы понять, как устранить шум в вентиляции, нужно сначала попытаться определить его источник, и исходя из этого, выбирать методы борьбы с ним.

Соответственно можно выделить основные направления устранения шума в вентиляции:

  • Проверка вентиляционной установки, смазка или замена подшипника при необходимости, натяжение или замена ремней. Проверка и замена вибровставок. Протяжка болтов, которые соединяют конструктивные элементы вентиляционной установки и установочной рамы.
  • Проверка целостности гибких вставок. Замена их при необходимости.
  • Проверка шиберов и анемостатов. Регулировка степени их открытия или закрытия.
  • Проверка шумоизоляции. В идеальном варианте она должна быть смонтирована при помощи специальных шайб, но зачастую ее обматывают обычным скотчем, который со временем отходит. Особенно в местах стыков воздуховодов. Для устранения этой причины достаточно подмотать проблемные места.
  • Проверка целостности воздуховодов и их чистоты внутри. Часто в системе воздуховодов оказываются посторонние предметы. К примеру, строительный мусор или животные. Очень часто в воздуховоды попадают птицы, кошки и мелкие грызуны (крысы и мыши) это случается в основном зимой, когда на улице холодно, а на воздухозаборниках отсутствуют решетки и защитные сетки. Зачастую животные, попавшие в вентиляцию, становятся не только причиной постороннего шума в воздуховодах, но и причиной неприятного запаха в помещении, так как они не всегда могут выбраться из воздуховодов самостоятельно и часто погибают там, начиная разлагаться.

Кроме того, необходимо осмотреть места соединения воздуховодов, при необходимости укрепить их соединения.

Для того, чтобы точно определить причину шума и качественное состояние элементов вентиляционной системы используется видеодиагностика.

Однако, нередки случаи, когда устранить причину шума в системах вентиляции можно только полностью демонтировав эту систему и собрав новую, предварительно разработав проект вентиляции.

В 90 случаях из 100 основная причина шума в вентиляционной системе многоэтажного дома является самовольная перепланировка квартир, установка дополнительных вентиляционных устройств за счет основной системы, засорение каналов и воздуховодов строительным мусором во время ремонта.

Известно, что воздуховод работает как резонатор звуковых колебаний. Сила звука обратно пропорциональна квадрату расстояния от источника, и при распространении в воздуховоде его интенсивность практически не снижается. Для этого необходимо изолировать источник шума. При невозможности отсечения источника звука от помещения, можно изолировать сам объект шума. В первую очередь, производится замена отрезка воздуховода и установка такого же сечения, но уже в более толстом слое шумоизоляции, от непосредственного помещения с работающей вентиляции до вентиляционного канала. Если канал с прямоугольным сечением, то таким же образом можно установить шумоглушитель ГТП и нужного сечения. Данный тип шумоглушителя производится из стального оцинкованного кожуха и перфорированного внутреннего слоя, а пространство между ними заполняется звукопоглощающим материалом. Устанавливая это устройство в воздушный канал можно существенно снизить аэродинамические шумы, звуки работающего оборудования, а также шум, передающийся движением воздуха по воздушной магистрали.

Сильный гул в системе вентиляции появляется из-за ветра, который попадает в воздуховодные каналы на большой скорости. Уменьшить его скорость – уменьшить звуковое давление на стенки воздуховода. Для этого можно установить в верхнюю часть вытяжной трубы шумоглушители. Они понизят скорость движения воздушных потоков и максимально снизят гул. Еще одним способом гашения резонансных колебаний воздуховодов является создание вокруг него бетонного каркаса на чердаке или крыше. Если технические условия не позволяют создать бетонный каркас, то можно просто обмотать воздуховод минераловатным утеплителем, толщиной 50 мм.

Уличные шумы, как и любые другие звуки – это звуковые колебания, которые идут на определенных частотах. При определенных условиях эти колебания можно поглотить или отразить. Наименее затратный вариант – это установка шумоглушителя. Учитывая тот факт, что источник шума находится снаружи вентиляционной системы, то и монтаж глушителя производится на входе в приточный канал. Кроме того, для того, чтобы отразить звук вместо вентиляционной решетки устанавливается анемостат. От внешней тарелки устройства звук будет отражаться и в комнате станет намного тише. Еще анемостатом можно регулировать воздухораспределение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *