Что является носителем тока в полупроводниках
Перейти к содержимому

Что является носителем тока в полупроводниках

  • автор:

Носители электрического тока

Носители электрического тока — это заряженные частицы или квазичастицы, которые могут свободно перемещаться внутри проводников и создавать электрический ток. Носителями электрического заряда могут являться:

  • в металлах — электроны,
  • в электролитах — ионы (катионы и анионы),
  • в газах — ионы и электроны,
  • в вакууме при определённых условиях — электроны,
  • в полупроводниках — электроны или дырки (электронно-дырочная проводимость).

Электричество в наши дни принято определять как «электрические заряды и связанные с ними электромагнитные поля». Само существование электрических зарядов обнаруживается через их силовое воздействие на другие заряды. Пространство вокруг всякого заряда обладает особыми свойствами: в нем действуют электрические силы, проявляющиеся при внесении в это пространство других зарядов. Такое пространство является силовым электрическим полем.

Пока заряды неподвижны, пространство между ними обладает свойствами электрического (электростатического) поля. Но когда заряды движутся, то вокруг них возникает также магнитное поле. Мы рассматриваем порознь свойства электрического и магнитного полей, но в действительности электрические процессы всегда связаны с существованием электромагнитного поля.

Носители электрического тока

Мельчайшие электрические заряды входят как составные части в атом. Атом есть наименьшая часть химического элемента, являющаяся носителем его химических свойств. Атом является весьма сложной системой. Его масса в большей своей части сосредоточена в ядре. Вокруг последнего по определенным орбитам обращаются электрически заряженные элементарные частицы — электроны.

Силы тяготения удерживают на орбитах планеты, обращающиеся вокруг солнца, а электроны притягиваются к ядру атома электрическими силами. Из опыта известно, что взаимно притягиваются лишь разноименные заряды. Следовательно, заряды ядра атома и электронов должны быть различными по знаку. По историческим причинам принято считать заряд ядра положительным, а заряды электронов — отрицательными.

Многочисленные опыты показали, что электроны атомов любых элементов обладают одинаковым электрическим зарядом и одинаковой массой. Вместе с тем заряд электрона является элементарным, т. е. наименьшим возможным электрическим зарядом.

Электроны

Принято различать электроны, находящиеся на внутренних орбитах атома и на внешних орбитах. Внутренние электроны относительно прочно удерживаются на своих орбитах внутриатомными силами. Но внешние электроны относительно легко могут отделяться от атома и оставаться некоторое время свободными или присоединяться к другому атому. Химические и электрические свойства атома определяются электронами его внешних орбит.

Открытие электрона — это одно из величайших достижений физики XIX века. Электрон был открыт английским физиком Джозефом Джоном Томсоном в 1897 году, когда он изучал катодные лучи в вакуумной трубке.

Он показал, что катодные лучи состоят из отрицательно заряженных частиц, которые он назвал “корпускулами”, а позже они получили название “электроны”. Он также измерил отношение заряда к массе электрона и предложил модель атома, в которой электроны распределены в положительно заряженной сфере.

Томсон объявил о своем открытии на заседании Лондонского королевского общества 29 апреля 1897 года. За свои исследования он получил Нобелевскую премию по физике в 1906 году.

Открытие электрона стало первым шагом к пониманию структуры атома и субатомных частиц. Электрон является одной из основных элементарных частиц, которые составляют материю, и имеет многочисленные приложения в науке и технике.

Величина положительного заряда ядра атома определяет принадлежность атома к определенному химическому элементу. Атом (или молекула) электрически нейтральны, пока сумма отрицательных зарядов электронов равна положительному заряду ядра. Но атом, потерявший один или несколько электронов, оказывается заряженным положительно вследствие избытка положительного заряда ядра. Он может перемещаться под действием электрических сил (притягиваться или отталкиваться). Такой атом является положительным ионом. Атом, захвативший излишние электроны, становится отрицательным ионом.

Носителем положительного заряда в ядре атома является протон. Это элементарная частица, служащая ядром атома водорода. Положительный заряд протона численно равен отрицательному заряду электрона, но масса протона в 1836 раз больше массы электрона. Ядра атомов, кроме протонов, содержат также нейтроны — частицы, не обладающие электрическим зарядом. Масса нейтрона в 1838 раз больше массы электрона.

Таким образом, из трех элементарных частиц, образующих атомы, электрическими зарядами обладают только электрон и протон. Но из них лишь заряженные отрицательно электроны могут легко перемещаться внутри вещества, а положительные заряды в обычных условиях могут перемещаться лишь в виде тяжелых ионов, т. е. перенося атомы вещества.

Упорядоченное движение электрических зарядов, т. е движение, имеющее преобладающее направление в пространстве, образует электрический ток. Частицами, движение которых создает электрический ток, — носителями тока в большинстве случаев являются электроны и значительно реже — ионы.

Электричсекий ток

Допуская некоторую неточность, можно определять ток как направленное движение электрических зарядов. Носители тока могут более или менее свободно перемещаться в веществе.

Проводниками называются вещества, относительно хорошо проводящие ток. К числу проводников принадлежат все металлы, в особенности хорошими проводниками являются серебро, медь и алюминий.

Проводимость металлов объясняется тем, что в них часть внешних электронов отщепляется от атомов. Положительные опыты, образовавшиеся вследствие потери этих электронов, связаны в кристаллическую решетку — твердый (ионный) скелет, в промежутках которого находятся свободные электроны в форме своего рода электронного газа.

Малейшее внешнее электрическое поле создает в металле ток, т. е. вынуждает свободные электроны перемешаться в направлении действующих на них электрических сил. Для металлов характерно уменьшение проводимости с увеличением температуры.

Корона на ВЛЭП

Полупроводники проводят электрический ток значительно хуже, чем проводники. К числу полупроводников принадлежит очень большое число веществ, и свойства их весьма разнообразны. Характерным для полупроводников является электронная проводимость (т, е. ток в них создается, как и в металлах, направленным перемещением свободных электронов — не ионов) и, в отличие от металлов, увеличение проводимости при повышении температуры. Вообще для полупроводников характерна также сильная зависимость их проводимости от внешних воздействий — облучения, давления и т. п.

Диэлектрики (изоляторы) практически не проводят ток. Внешнее электрическое поле вызывает поляризацию атомов, молекул или ионов диэлектриков, т. е. смещение под действием внешнего поля упруго связанных зарядок, входящих в состав атома или молекулы диэлектрика. Количество свободных электронов в диэлектриках очень мало.

Нельзя указать жесткие границы между проводниками, полупроводниками и диэлектриками. В электротехнических устройствах проводники служат путем для перемещения электрических зарядов, а диэлектрики нужны, чтобы направить должным образом это движение.

Электрический ток создается вследствие воздействия на заряды сил неэлектростатического происхождения, называемых сторонними силами. Они создают в проводнике электрическое поле, которое вынуждает положительные заряды перемещаться по направлению действия сил поля, а отрицательные заряды — электроны — в противоположном направлении.

Полезно уточнить представление о поступательном движении электронов в металлах. Свободные электроны находятся в состоянии беспорядочного движения в пространстве между атомами, под обратном тепловому движению молекул. Тепловое состояние тела обусловливается столкновениями молекул друг с другом и столкновениями электронов с молекулами.

Электрон сталкивается с молекулами и меняет направление своего движения, но постепенно все же продвигается вперед, описывая очень сложную кривую. Длительное перемещение заряженных частиц в одном определенном направлении, налагающееся на их беспорядочное движение в разных направлениях, называется их дрейфом. Таким образом, электрический ток в металлах, по современным воззрениям, является дрейфом заряженных частиц.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Что является носителем заряда в полупроводниках

Проводники и диэлектрики свое название получили вследствие того, что первые электрический ток пропускают через себя без проблем, вторые его не пропускают совсем. Существует еще одна категория материалов, которая располагается между диэлектриками и проводниками — это полупроводники. Их отличительная особенность — пропускать электрический ток через себя при определенных условиях. Самое важное из них — температура. Если она низкая, ток через полупроводниковый материал не пройдет. Температурный режим начинает повышаться, токопроводимость увеличивается. Это все происходит из-за того, что связь электронов с ядром атома в структурной решетке становится слабой. Они отрываются от ядра и начинают двигаться. Так появляются свободные носители отрицательного электрического заряда в полупроводниках.

Особенности полупроводников

Особенности полупроводников

Как появляется ток

Прямой ток в проводниках образуется потоком электронов, движущихся в одну сторону. Электрон — это носитель элементарного отрицательного электрического заряда и именно он в проводниках является основным носителем тока.

В полупроводниках появление тока происходит несколько иначе. При воздействии температуры и электрического поля создаются условия для ослабевания валентных связей у полупроводникового материала. Их у него четыре — в каждой связи по два электрона, каждый из которых принадлежит двум соседним атомам. При ослабевании связи один из них отрывается. На его месте образуется вакансия, которая называется дыркой. В структуре атома она тут же становится положительно заряженной микрочастицей.

В соседних атомах все происходит по тому же сценарию: электроны отрываются, вместо них образуются дырки. При этом оторвавшиеся частицы соседних атомов занимают места своих собратьев. Например, слева расположен отрицательный заряд, справа соответственно положительный. Оторвавшиеся отрицательно заряженные частицы будут двигаться к плюсу, дырки, соответственно, к минусу.

Образование электронно-дырочной пары

Образование электронно-дырочной пары

Получается два потока заряженных микрочастиц, движущихся навстречу друг другу, то есть, в противоположные стороны. При этом электроны — это носители отрицательного заряда. Дырки ведут себя как положительно заряженные частицы. Отсюда можно сделать вывод, что ток в полупроводниковых структурах образуют основные и неосновные носители заряда. Поэтому он представляет собой сумму двух разных потоков: дырочного и электронного. Такую проводимость физики называют электронно-дырочной или собственной. Но есть еще и другая проводимость, которая называется примесной.

Механизм собственной проводимости

Механизм собственной проводимости

Особенности примесной проводимости

Эта категория проводимости создается, когда в полупроводник добавляется другой материал. У последнего валентных связей должно быть или три, или пять. Например, когда добавляется трехвалентный компонент, структура общего материала становится такой, что одна связь у полупроводника остается свободной. Именно электрон этой связи отрывается, потому что ни с чем не связан. Но образовать поток он не может, поскольку тут же захватывается атомом примесного компонента, который превращается в отрицательно заряженный ион. В некоторых полупроводниках ионы также могут стать носителем заряда, но в основном ионную проводимость имеют электролиты.

Атом, от которого оторвался электрон, становится положительно заряженным, то есть некомпенсированным. Для компенсации ему нужна отрицательно заряженная частица, и она приходит с соседнего атома. На месте оторвавшегося электрона образуется дырка. Это происходит по всей структуре материала. Вакансий становится все больше и больше, при этом дырки не движутся в одном направлении, их движения хаотичны. Но электронов в полупроводнике с трехвалентной примесью все равно больше, поскольку это не только оторвавшиеся частицы, но и те, которые закрывают собой вакансии. Именно поэтому снижается удельное сопротивление полупроводникового материала. Такую проводимость называют дырочной, хотя носителем заряда все равно выступает электрон.

Использование трехвалентной примеси

Использование трехвалентной примеси

Если в полупроводниковую структуру добавить пятивалентный компонент, то все происходит наоборот. Свободные носители заряда — электроны оказываются у примеси. Именно они отрываются и уходят в поток, поскольку ничем с атомом полупроводника не связаны. Поток получается направленным в одну сторону — к положительному заряду. В этом случае отрицательных частиц тоже в разы больше, чем вакансий, отчего сопротивление материала сильно снижается, и ток свободно проходит сквозь полупроводник. При использовании пятивалентной примеси основные носители заряда — это электроны, поэтому проводимость называют электронной.

Использование пятивалентной примеси

Использование пятивалентной примеси

Преимущества использования примеси

Если в полупроводниковые материалы добавляется примесь, то в них в зависимости от используемого компонента появляется или электронный ток, или дырочный. То есть, два отдельных, а не как в случае с собственной проводимостью — электронно-дырочный. Но здесь надо понять два момента:

  • Электронная проводимость — это поток свободных отрицательно заряженных микрочастиц.
  • Дырочная проводимость — это поток отрицательно заряженных частиц, но связанных. Здесь имеется в виду связь с ядром атома полупроводникового материала.

Примеси, которые являются источником электронов, называют донорными. Основные носители заряда при использовании такой примеси — электроны. Поэтому полупроводники имеют электронную проводимость и являются материалами n-типа. Название произошло от английского слова negative, которое переводится как отрицательный.

Структура полупроводника n-типа

Структура полупроводника n-типа

Примеси, которые забирают электроны из валентной зоны полупроводниковых веществ, называют акцепторными. Основные носители заряда при использовании акцепторной примеси — дырки. Следовательно, полупроводник имеет дырочную проводимость и относится к материалам р-типа — от английского positive, то есть, положительный.

Структура полупроводника р-типа

Структура полупроводника р-типа

Полупроводники отличаются тем, что в них всегда присутствуют носители зарядов двух типов — электроны и дырки. Основными считаются те, концентрация которых больше. В полупроводнике n-типа такими являются электроны, а р-типа — дырки. При отсутствии электрического поля и электроны, и дырки совершают хаотические колебания. Под воздействием поля они начинают двигаться упорядоченно, в результате чего появляется ток.

§ 37. Электрический ток в полупроводниках. Собственная и примесная проводимости полупроводников

Полупроводники — широкий класс как неорганических, так и органических веществ в твёрдом или жидком состоянии. Полупроводники обладают многими замечательными свойствами, благодаря которым они нашли широкое применение в различных областях науки и техники. Каковы особенности строения полупроводников?

Рис.

Зависимость сопротивления полупроводников от температуры и освещённости. Удельное сопротивление полупроводников находится в пределах от 10 –6 до 10 8 Ом · м (при Т = 300 К), т. е. во много раз меньше, чем у диэлектриков, но существенно больше, чем у металлов. В отличие от проводников удельное сопротивление полупроводников резко убывает при увеличении температуры, а также изменяется при изменении освещения и введении сравнительно небольшого количества примесей. К полупроводникам относят ряд химических элементов (бор, углерод, кремний, германий, фосфор, мышьяк, сурьма, сера, селен, теллур и др.), множество оксидов и сульфидов металлов, а также других химических соединений.

Изучить свойства полупроводников можно на опытах. Соберём электрическую цепь, состоящую из источника тока, полупроводника и миллиамперметра ( рис. 215 ). Из опыта следует, что при нагревании полупроводника сила тока в цепи возрастает. Возрастание силы тока обусловлено тем, что при увеличении температуры сопротивление полупроводника уменьшается.

Рис.

Проведём ещё один опыт. Изменяя освещённость поверхности полупроводника, наблюдаем изменение показаний миллиамперметра ( рис. 216 ). Результаты наблюдений означают, что при освещении поверхности полупроводника его сопротивление уменьшается.

Таким образом, уменьшить сопротивление полупроводника можно, либо нагревая его, либо воздействуя электромагнитным излучением, например освещая его поверхность.

Природа электрического тока в полупроводниках. Экспериментально установлено, что при прохождении электрического тока в полупроводниках, как и в металлах, никаких химических изменений не происходит, т. е. перенос заряда при прохождении тока не сопровождается переносом вещества. Это свидетельствует о том, что свободными носителями электрического заряда в полупроводниках, как и в металлах, являются электроны.

Рассмотрим механизм проводимости полупроводников на примере кристалла германия Ge, валентность атомов которого равна четырём.

Рис.

Атомы германия на внешней оболочке имеют четыре сравнительно слабо связанных с ядром валентных электрона. При этом каждый атом кристалла связан с четырьмя соседними атомами ковалентными связями. Два соседних атома объединяют два своих валентных электрона (по одному от каждого атома), которые образуют электронную пару. Поэтому все валентные электроны атома германия участвуют в образовании ковалентных связей. На рисунке 217 изображена плоская схема пространственной решётки кристалла германия. При температуре, близкой к абсолютному нулю, ковалентные связи германия достаточно прочны, поэтому свободные электроны отсутствуют и германий является диэлектриком.

Рис.

Для того чтобы разорвать ковалентную связь и сделать электрон свободным, кристаллу германия необходимо сообщить некоторую энергию, например, нагревая кристалл или облучая его поверхность. При этом часть электронов получает энергию, достаточную для того, чтобы покинуть атомы и стать свободными.

Нейтральный атом, которому принадлежал освободившийся электрон, становится положительно заряженным ионом, а в ковалентных связях образуется вакантное место с недостающим электроном. Его называют дыркой ( рис. 218 ).

Одновременно с процессом возникновения свободных электронов и дырок происходит процесс, при котором один из электронов (не свободный, а обеспечивающий ковалентную связь) перескакивает на место образовавшейся дырки и восстанавливает ковалентную связь. При этом положение дырки меняется, что можно моделировать как её перемещение. Таким образом, при отсутствии внешнего электрического поля в кристалле полупроводника наблюдается беспорядочное перемещение свободных электронов и дырок, концентрации которых в чистом полупроводнике одинаковые.

Интересно знать

Дырочная проводимость в действительности обусловлена «эстафетным» перемещением по вакансиям от одного атома кристалла полупроводника к другому электронов, которые осуществляют ковалентную связь. Дырок, как положительных зарядов, существующих реально, в действительности нет. Тем не менее, представление о них является хорошей физической моделью, которая дает возможность рассматривать электрический ток в полупроводниках на основе законов физики.

Рис.

Дырки считают подвижными носителями положительного заряда, который равен модулю заряда электрона.

При наличии внешнего электрического поля на беспорядочное движение свободных электронов и дырок накладывается их упорядоченное движение, т. е. возникает электрический ток. Причём движение свободных электронов происходит в направлении, противоположном направлению напряжённости внешнего электрического поля, а движение дырок совпадает с направлением напряжённости поля ( рис. 219 ).

Проводимость, обусловленную движением свободных электронов и дырок в чистом полупроводнике, называют собственной проводимостью полупроводника.

При сообщении полупроводнику энергии концентрация свободных электронов, а следовательно, и дырок возрастает, так как увеличивается число разрывов ковалентных связей. Этим и объясняется уменьшение сопротивления полупроводника при его нагревании и облучении.

Примесная проводимость полупроводников. Изменить свойства полупроводников можно не только нагреванием или воздействием электромагнитного излучения, но и добавлением в чистый полупроводник примесей. Тогда в полупроводнике наряду с собственной проводимостью возникает примесная проводимость.

Проводимость, обусловленную наличием примесей в полупроводнике, называют примесной проводимостью полупроводника.

Рассмотрим механизм этой проводимости на примере кристалла германия Ge, содержащего примесь атомов мышьяка As, валентность которых равна пяти.

Рис.

Четыре валентных электрона атома мышьяка образуют ковалентные связи с соседними атомами германия ( рис. 220 ). Пятые электроны атомов мышьяка не задействованы в образовании ковалентных связей и могут свободно перемещаться, почти как электроны в металлическом проводнике. Проводимость такого кристалла будет преимущественно электронной. Дырки, образующиеся в результате разрыва отдельных ковалентных связей между атомами германия, являются неосновными носителями электрического заряда, так как их концентрация мала по сравнению с концентрацией свободных электронов. Такие полупроводники называют электронными полупроводниками или полупроводниками n-типа (от лат. negativ ‒ отрицательный).

Примеси, поставляющие в полупроводники свободные электроны без возникновения равного им количества дырок, называют донорными (отдающими). Удельное сопротивление полупроводника с содержанием таких примесей резко уменьшается и может приближаться к удельному сопротивлению металлического проводника.

Теперь рассмотрим механизм примесной проводимости полупроводника на примере кристалла германия Ge, содержащего примесь атомов индия In, валентность которых равна трем.

Рис.

Валентные электроны атома индия образуют ковалентные связи лишь с тремя соседними атомами германия ( рис. 221 ). На образование связи с четвертым атомом германия у атома индия электрона нет. Поэтому возле каждого атома индия одна из ковалентных связей будет незаполненной, т. е. возникает дырка. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. Но при этом дырка образуется на том месте, где до этого находился электрон.

В результате введения такой примеси в кристалле разрывается множество ковалентных связей и образуются дырки. Проводимость такого кристалла будет преимущественно дырочной. Свободные электроны, которые возникают за счет собственной проводимости полупроводника, являются неосновными носителями электрического заряда, так как их концентрация мала по сравнению с концентрацией дырок. Такие полупроводники называют дырочными полупроводниками или полупроводниками p-типа (от лат. positiv ‒ положительный).

Примеси, наличие которых в полупроводнике приводит к образованию дырок, не увеличивая при этом числа свободных электронов, называют акцепторными (принимающими). Удельное сопротивление полупроводников, содержащих акцепторные примеси, также резко уменьшается.

От теории к практике

Какой проводимостью будет обладать германий при введении в него небольшого количества фосфора? галлия? сурьмы?

Техническое применение полупроводников. Приборы, работа которых основана на свойстве полупроводников изменять своё сопротивление при изменении температуры, называют термисторами или терморезисторами.

Рис.

Терморезисторы ( рис. 222 ) используют для защиты телефонных станций и линий от токовых перегрузок, для пускозащитных реле компрессоров холодильников, поджига люминесцентных ламп, подогрева дизельного топлива; в различных электронагревательных устройствах: нагревательных решётках тепловентиляторов, сушилках для обуви.

Рис.

Приборы, работа которых основана на свойстве полупроводников изменять своё сопротивление при изменении освещённости их поверхности, называют фоторезисторами или фотосопротивлениями ( рис. 223 ). Их используют для регистрации слабых потоков света, при сортировке и счёте готовой продукции, для контроля качества и готовности самых различных деталей; в полиграфической промышленности для обнаружения обрывов бумажной ленты, контроля количества листов бумаги, подаваемых в печатную машину; в медицине, сельском хозяйстве и других областях.

Широкое применение находят полупроводниковые диоды, которые являются основными элементами выпрямителей переменного тока и детекторов электромагнитных сигналов. С помощью полупроводниковых диодов можно осуществить непосредственное превращение энергии электромагнитного излучения в электрическую энергию. Такие диоды называют фотодиодами ( рис. 224 ).

В электрических устройствах (схемах) используют транзистор — прибор, предназначенный для усиления, генерации, преобразования и коммутации сигналов в электрических цепях.

Светоизлучающий диод (светодиод) — это полупроводниковый прибор, преобразующий электрическую энергию непосредственно в световое излучение. Он представляет собой миниатюрный полупроводниковый диод, помещённый в прозрачный корпус ( рис. 225 ). Используя светодиоды, изготавливают, например, светодиодные светильники ( рис. 226 ).

Рис. Рис. Рис.

От теории к практике

Рис.

1. Для сортировки и счёта деталей широко применяют фоторезисторы. Каким свойством полупроводников можно объяснить действие этого прибора?

2. На рисунке 227 представлены графики зависимости силы тока от напряжения для терморезистора. Какой из графиков соответствует более низкой температуре терморезистора? Определите сопротивление терморезистора при более высокой температуре.

Из истории физики

В 2000 г. уроженцу Беларуси Жоресу Ивановичу Алфёрову ( 1930–2019 ) совместно с американскими учёными Гербертом Кремером и Джеком Килби была присуждена Нобелевская премия по физике за «исследование полупроводниковых гетероструктур, лазерных диодов и сверхбыстрых транзисторов».

img

1. Каково строение полупроводников (на примере кристалла германия)?

2. Какова природа электрического тока в полупроводниках?

3. Объясните механизм собственной проводимости полупроводников.

4. Как зависит сопротивление полупроводников от температуры? освещённости?

5. Может ли наблюдаться у полупроводников явление сверхпроводимости? Почему?

6. В чём отличие зависимости электрической проводимости металлических проводников, полупроводников и диэлектриков от температуры? Почему?

7. В каком случае полупроводник может проявлять свойства диэлектрика?

8. Как влияет на проводимость металлических проводников, полупроводников и диэлектриков наличие в них небольшого количества примесей?

9. Приведите примеры использования полупроводниковых приборов.

Полупроводники

Полупроводники́, вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (10 6 — 10 4 Ом -1 см -1 ) и диэлектриков (10 -8 — 10 -12 Ом -1 см -1 ), обусловлена переносом электронов и возрастает при повышении температуры. Наиболее существенная особенность полупроводников — способность изменять свои свойства в чрезвычайно широких пределах под влиянием различных воздействий (температуры, освещения, электрического и магнитного поля, внешнего гидростатического давления). В результате таких воздействий характеристики полупроводника могут сильно изменяться, (например, электропроводность может меняться в 10 6 -10 7 раз). Именно эта способность изменять свойства под влиянием внешних воздействий и обусловила широкое применение полупроводников. На основе различных полупроводниковых материалов разработано и создано огромное количество разнообразных полупроводниковых приборов.

Физические свойства полупроводников получили свое объяснение на основе зонной теории, которая позволяет сформулировать критерий, разделяющий твердые вещества на два класса — металлы и полупроводники (диэлектрики). В металлах валентная зона заполнена полностью или перекрывается с зоной проводимости. В полупроводниках и диэлектриках зона проводимости отделена от валентной зоны запрещенной зоной, и не содержит носителей. Деление неметаллических веществ на полупроводники и изоляторы (диэлектрики) является чисто условным. Ранее к изоляторам относили вещества с величиной запрещенной зоны Eg >2-3 эВ. Однако многие из таких кристаллов являются типичными полупроводниками.

Проводимость в полупроводниках

Электрический ток в полупроводниках связан с дрейфом носителей заряда (см. дрейф заряженных частиц). В полупроводниках появление носителей заряда определяется рядом факторов, важнейшими из которых являются химическая чистота материала и температура. В зависимости от чистоты полупроводники подразделяют на собственные и примесные.

В собственном полупроводнике можно пренебречь влиянием примесей при данной температуре. Так как в полупроводниках запрещенная зона не очень широкая, в собственном полупроводнике при температуре абсолютного нуля валентная зона полностью заполнена электронами, а зона проводимости абсолютно свободна: он не обладает электропроводностью и ведет себя подобно идеальному диэлектрику. При температурах, отличных от абсолютного нуля, имеется конечная вероятность того, что некоторые из электронов за счет тепловых флуктуаций (неравномерного распределения тепловой энергии между частицами) преодолеют потенциальный барьер и окажутся в зоне проводимости. Вероятность перехода электрона из валентной зоны в зону проводимости зависит от температуры и ширины запрещенной зоны(Eg), ~-Eg/kT.

В собственном полупроводнике каждый переход электрона в зону проводимости сопровождается образованием дырки в валентной зоне. Благодаря дыркам электроны валентной зоны также принимают участие в процессе электропроводности за счет эстафетных переходов под действием электрического поля на более высокие освободившиеся энергетические уровни. Совокупное поведение электронов валентной зоны можно представить как движение дырок, обладающих положительным зарядом и некоторой эффективной массой. Чем выше температура и меньше ширина запрещенной зоны, тем выше скорость тепловой генерации носителей заряда (электронов и дырок). Одновременно с генерацией в полупроводнике непрерывно идет и обратный процесс, процесс рекомбинации носителей заряда, т.е. возвращение электронов в валентную зону с исчезновением пары носителей заряда. В результате протекания двух конкурирующих процессов в полупроводнике при любой температуре устанавливается некоторая равновесная концентрация электронов no и дырок po, которые равны друг другу в собственном полупроводнике (равновесная концентрация электронов ni = равновесной концентрации дырок pi) . (Индекс i происходит от англ. intrinsic — собственный).

В собственных полупроводниках наблюдается электронно-дырочный механизм проводимости.

Электрофизические свойства примесного полупроводника определяются в первую очередь типом и концентрацией примеси, которая создает дополнительные уровни в запрещенной зоне полупроводника. При малой концентрации примесей расстояние между примесными атомами велико, их электронные оболочки не взаимодействуют друг с другом. Поэтому примесные энергетические уровни являются дискретными, т. е. не расщепляются в зону, как это имеет место для уровней основных атомов кристаллической решетки. Роль дискретных уровней могут играть и всевозможные дефекты структуры, в первую очередь, вакансии и междоузельные атомы. Примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны. Примеси, являющиеся источником электронов, называются донорами, а энергетические уровни этих примесей — донорными уровнями. Основными носителями тока в таких полупроводниках являются электроны, возникает электронная проводимость (проводимость n -типа). Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторами, а энергетические уровни этих примесей — акцепторными уровнями. Основные носители заряда в таких полупроводниках — дырки. В них наблюдается дырочная проводимость (проводимость p -типа).

В полупроводниках всегда присутствуют оба типа носителей заряда. Основными называют носители заряда, концентрация которых в данном полупроводнике больше, неосновными — носители заряда, концентрация которых меньше. В полупроводнике n — типа основные носители заряда — электроны, неосновные — дырки, в полупроводнике p-типа дырки — основные, а электроны — неосновные.

Если в полупроводнике n — типа увеличить концентрацию доноров, то возрастет число электронов, переходящих в единицу времени с примесных уровней в зону проводимости. Соответственно возрастет скорость рекомбинации носителей заряда и уменьшится равновесная концентрация дырок. При помощи соотношения:

no . po = n 2 i

называемого соотношением действующих масс для носителей заряда всегда можно, найти концентрацию неосновных носителей заряда, если известна концентрация основных. Характерная особенность полупроводников — рост электропроводности с увеличением температуры — обусловлена ростом концентрации носителей при увеличении температуры.

Механизмы рассеяния и подвижность носителей заряда в полупроводниках

Под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения (скорость дрейфа) и создают электрический ток. Подвижность носителей заряда, равная средней скорости носителей заряда в полупроводнике в электрическом поле с напряженностью 1В/см, зависит от длины их свободного пробега, а, следовательно, определяется процессами рассеяния движущихся в полупроводнике электронов.

Процесс рассеяния представляет собой искривление траектории движения носителя заряда под влиянием сил, действующих на электрон или дырку со стороны рассеивающего центра. Если таким центром является положительный ион, то рассеивающей силой будет кулоновский потенциал, если рассеивающим центром является нейтральный атом примеси, рассеиваемый электрон, сталкиваясь с ним, выбивает электрон, принадлежащий атому, рассеиваемый электрон остается в атоме, а выбитый, получив энергию, движется по измененной траектории. Так как электроны неразличимы, акт обмена электронами рассматривается как акт изменения траектории электрона, т. е. рассеяние. Характерной особенностью рассеяния на нейтральных атомах является независимость времени релаксации от энергии рассеиваемых носителей заряда и температуры. Процесс рассеяния электронов на тепловых колебаниях решетки рассматривается как столкновение с фононом. Поскольку число фононов определяется температурой, то и рассеяние носителей заряда зависит от температуры. Рассеивающими центрами при движении электрона являются также структурные дефекты кристаллической решетки — дислокации, вакансии, имеет место также электрон-электронное рассеяние.

В реальных полупроводниках действуют одновременно несколько механизмов рассеяния, причем вклад каждого из них может сильно меняться с изменением температуры и концентрации примеси.

Механизмы рекомбинации в полупроводниках

Закон действующих масс для носителей заряда применим только к равновесным процессам. Генерация носителей заряда в полупроводниках может осуществляться не только за счет теплового воздействия но и при облучении светом, при воздействии электрического поля, при инжекции через контакт и т. д. В результате таких воздействий в полупроводнике появляются дополнительные, неравновесные носители заряда. Их концентрация является избыточной по отношению к равновесной и после прекращения нетеплового возбуждения полупроводник возвращается в равновесное состояние, при этом избыточная концентрация носителей заряда за счет процесса рекомбинации спадает до нуля. Принцип действия почти всех электронных приборов основан на явлении инжекции неравновесных носителей при воздействии на кристалл внешних сил (световое, электромагнитное излучение радиочастотного диапазона, облучение ядерными частицами и т. д.). Поэтому скорость рекомбинации определяет быстродействие прибора. Чем больше скорость рекомбинации, тем на более высоких частотах будет работать прибор.

Скорость рекомбинации характеризуется временем жизни носителей заряда — характеристическим временем, по истечении которого избыточная концентрация носителей заряда при линейной рекомбинации уменьшается в е раз. Т. е. характеризует среднее время существования избыточной концентрации и зависит от вида и механизма рекомбинации, состава полупроводника, температуры.

Существует два вида рекомбинации: зона — зона, при котором избыточные электроны из зоны проводимости непосредственно переходят в валентную зону, и рекомбинация через глубокие уровни в запрещенной зоне полупроводника.

При рекомбинации происходит отдача энергии, полученной при генерации. Механизмы рекомбинации классифицируют по способу отдачи энергии, выделяющейся при акте захвата носителей при рекомбинации.

Наиболее вероятные механизмы рекомбинации в полупроводниках:

— излучательная рекомбинация, при которой энергия выделяется в виде кванта электромагнитного излучения;

— фононная рекомбинация, связанная с непосредственной передачей выделяющейся энергии колебаниям атомной решетки:

— ударная рекомбинация (эффект Оже), когда энергия сначала передается ближайшему свободному электрону (или дырке), который затем отдает свою избыточную энергию либо колебаниям атомов решетки, либо другим носителям.

Все три механизма могут осуществляться как при рекомбинации зона-зона, так и при рекомбинации через локальные центры.

Оптические явления в полупроводниках

При воздействии на полупроводник светом могут быть реализованы следующие типы взаимодействия квантов света с носителями заряда: собственное поглощение, экситонное поглощение, поглощение на свободных носителях, примесное поглощение.

В случае собственного поглощения происходит взаимодействие фотонов с электронами в валентной зоне, т. е. с собственными электронами атомов, составляющих кристаллическую решетку, Фотоны определенной энергии способны отдать свою энергию этим электронам, оторвать их от атомов и перевести электроны на более высокие энергетические уровни. В этом случае фотоны поглощаются в кристалле. При собственном поглощении переходы могут быть прямые, когда волновой вектор электрона остается неизменным, и электрон и оставляемая им дырка имеют одинаковые квазиимпульсы. Возможны также непрямые переходы с участием фононов, которым передается избыточный импульс. По краю собственного поглощения можно определить ширину запрещенной зоны полупроводника.

В некоторых полупроводниках наблюдается экситонное поглощение. При поглощении фотонов образуются экситоны, которые могут блуждать по кристаллу. При столкновении с примесными центрами экситон может либо распасться и образовать электрон и дырку, либо рекомбинировать и перевести атом в невозбужденное состояние. В первом случае экситону необходима тепловая энергия, во втором — либо происходит излучение кванта энергии, либо энергия экситона переходит решетке полупроводника в виде теплоты.

Поглощение на свободных носителях имеет место, когда фотоны реагируют со свободными носителями заряда в разрешенных зонах. При этом энергия фотонов расходуется на перевод носителей заряда на более высокие уровни. Под действием электрического поля световой волны носители заряда совершают колебательные движения синхронно с полем и при столкновении с узлами решетки отдают накопленную энергию.

В случае примесного поглощения света фотоны взаимодействуют с примесными атомами, ионизируя или возбуждая их. Взаимодействие фотонов с примесными атомами носит резонансный характер.

В полупроводниковых кристаллах также имеет место поглощение света кристаллической решеткой. Оно проявляется в далекой ИК-области спектра и накладывается на другие виды поглощения.

В случае примесного и собственного оптического поглощения происходит генерация неравновесных носителей заряда, которая сопровождается изменением электрических свойств полупроводника при освещении — наблюдается эффект фотопроводимости, используемый для создания широкого класса приборов. К неравновесным оптическим явлениям, характерным для полупроводниковых кристаллов и нашедших широкое применение в полупроводниковом приборостроении относится люминесценция.

Сильно легированные полупроводники

При больших концентрациях примесей или дефектов проявляется их взаимодействие, ведущее к качественным изменениям свойств полупроводников. Это можно наблюдать в сильно легированных полупроводниках, когда что среднее расстояние между атомами примеси становится меньше (или порядка) среднего расстояния а, на котором находится от примеси захваченный ею электрон или дырка. В таких условиях носитель вообще не может локализоваться на каком-либо центре, т. к. он все время находится на сравнимом расстоянии сразу от нескольких одинаковых примесей. Более того, воздействие примесей на движение электронов вообще мало, т. к. большое число носителей со знаком заряда, противоположным заряду примесных ионов, экранируют (т. е. существенно ослабляют) электрическое поле этих ионов. В результате все носители, вводимые с этими примесями, оказываются свободными даже при самых низких температурах.

Полупроводники в сильном электрическом поле

Сильное электрическое поле влияет на подвижность и концентрацию носителей заряда. Существуют несколько механизмов увеличения концентрации носителей в сильном электрическом поле. Основными механизмами являются три: термоэлектрическая (термополевая) ионизация (эффект Френкеля), электростатическая ионизация (туннельный эффект) и ударная ионизация.

Механизм термополевой ионизации реализуется при низких температурах, когда концентрация электронов в зоне проводимости определяется вероятностью их освобождения с донорных уровней. На электрон, находящийся на донорном уровне, в электрическом поле помимо силы кулоновского притяжения к иону-донору действует сила F=-qE, способная помочь электрону оторваться от донора и стать свободным. Т. е. повышается вероятность перехода электронов с донорных уровней в зону проводимости, что и означает увеличение концентрации носителей и возрастание электропроводности.

При более высоких температурах, когда донорная примесь ионизирована полностью, главную роль в увеличении концентрации носителей играют явления, связанные с ударной и электростатической (туннельной) ионизацией решетки кристалла в полях большой напряженности.

Дополнительная литература

  • Королева Л. И. Магнитные полупроводники. — М.: Физ. фак. МГУ 2003.
  • Сложные полупроводники. Получение, свойства, применение. — Ужгород: Ужгород. ун-т, 1981.
  • Анатычук Л. И. Полупроводники в экстремальных температурных условиях . — СПб.: Наука, 2001.
  • Полумагнитные полупроводники. — М.: Мир, 1992.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *