Регулятор скорости вентилятора
В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы. Настройка производится до закрепления термодатчика на радиаторе. Вращая R1 добиваемся чтобы вентилятор остановился и затем вращая в обратную сторону заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов) Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести) то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания, а потом, через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем как все это будет крутится пpи реальной работе. Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10 — 30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).
Список радиоэлементов
none
Опубликована: 2004 г.
0
0
Вознаградить Я собрал 0 1
Оценить статью
- Техническая грамотность
Как сделать регулятор оборотов кулера 12в своими руками
Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера. В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры, автоматическую регулировку скорости и т.д.).
Схема регулятора оборотов вентилятора.
Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор.
В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе пользователь может поставить слишком низкое напряжение на вентиляторе, при котором он будет продолжать крутиться, но которого будет недостаточно для его запуска при включении.
- В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.
- Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.
- Постоянный резистор может быть любого типа с сопротивлением 1 или 1.2 кОм.
Монтаж и подключение регулятора скорости.
Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто:
Подключается наш
регулятор оборотов
в разрыв цепи +12В, как показано на рисунке.
Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких плюс питания подаётся по желтому проводу), то регулятор включается в разрыв желтого провода.
Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.
Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 — 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 — 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.
Как управлять скоростью вращения кулера в ПК – схема сборки регулятора оборотов вентилятора 12В своими руками
Эта инструкция призвана помочь вам в создании простого 3-х режимного контроллера (регулятора оборотов вентилятора) для любого компьютерного кулера, рассчитанного на постоянное напряжение 12 В. Как управлять скоростью вращения кулера вы узнаете из данной инструкции.
Внимание! Вы должны понимать, что несете полную ответственность за то, что вы будете делать со своими устройствами, и, если вы что-то сломаете, вина будет лежать полностью на вас!
Данный регулятор оборотов кулера позволит переключать его в 3 режима: выключен, средняя скорость и полная скорость.
Возможность полного отключения кулеров корпуса компьютера, позволит уменьшить шум, издаваемый вентиляторами, когда не требуется интенсивное охлаждение температуры компонентов компьютера. Две скорости вращения вентиляторов будут поддерживать систему в тихом состоянии, при этом не переставая охлаждать ее.
Для управления оборотами вентилятора на ПК вам потребуются:
- Вентиляторы постоянного тока, которые можно приобрести на Ebay. Вентиляторы используем с двумя выводами, которые не имеют регулировки частоты вращения и работают на полную мощность при напряжении 12 В (при этом сильно шумят). Не берите вентиляторы со светодиодной подсветкой, т.к. светодиоды все равно будут светить тускло, при снижении напряжения питания.
- Выключатель.
- Двухпозиционный переключатель.
- Обрезки проводов.
- Паяльник и припой.
- Изоляционная лента или термоусадочная трубка.
- Источник питания компьютера.
- Отвертка (для вскрытия корпуса вашего компьютера).
Шаг 1: Отрезаем, откусываем, отстригаем
Сначала отрежьте штекер вентилятора, при этом оставьте провода как можно более длинными.
Вентилятор имеет один провод (плюсовой) – красный, второй провод (минусовой) – обычно черный.
Можете подключить несколько вентиляторов к одному компьютерному разъему питания Molex. Обрежьте провода, как показано на фото.
Шаг 2: Паяем
Разогрейте паяльник и приступайте к пайке.
Если вы будете подключать сразу несколько вентиляторов, то соедините их параллельно друг другу: красные провода – с красными, черные – с черными.
Нарастите провода для облегчения соединения вентиляторов с источником питания (на схеме наращенные провода показаны синим цветом).
Изолируйте соединения с помощью изоленты или термоусадочной трубки.
Шаг 3: Припаиваем выключатель
Отрицательный провод (черный), идущий от вентиляторов, припаяйте к одному из выводов выключателя.
Второй вывод выключателя припаяйте к черному, минусовому проводу штекера Molex. При этом, в случае необходимости, нарастите провод от штекера.
Шаг 4: Переключатель высокой и низкой скоростей
Изменение скорости вращения вентиляторов будет происходить за счет переключения между двумя напряжениями, которые будут сниматься с компьютерного штекера Molex:
Желтый провод – 12 В (полная скорость).
Красный провод – 5 В (средняя скорость).
Припаяйте желтый провод от штекера Molex к одному из внешних выводов двухпозиционного переключателя, а красный – к другому. Нарастите провода, если это потребуется.
К среднему выводу переключателя припаяйте отрезок провода и переходите к следующему шагу.
Шаг 5: Следующий шаг
Теперь спаяйте вместе провод, идущий от среднего контакта переключателя и плюсовой провод вентиляторов (красный).
Все электронные компоненты соединены, переходим к тестированию.
Шаг 6: Тестирование
Для проведения тестирования можете использовать старый блок питания от компьютера.
Предупреждение! В блоке питания компьютера присутствует высокое напряжение, опасное для жизни! Будьте осторожны!
Если у вас нет отдельного БП, выньте его из компьютера и только тогда проводите с ним опыты. Сгоревший блок питания лучше сгоревшего компьютера!
Отключите БП от сети!
Отсоедините штекеры от материнской платы и приводов компьютера. Открутите винты крепления блока питания и выньте его из корпуса.
Порядок разборки компьютера своими руками вы можете найти на YouTube.
Блок питания свободен! Найдите зеленый провод, идущий от блока питания. Это вывод 16 (согласно распиновки, показанной на фото).
Соедините зеленый провод 16 с черным 15 (землей). Это соединение заставит блок питания запускаться. Подключите блок питания к электросети и подсоедините вентиляторы.
Включите блок питания, затем, с помощью выключателя, включите вентиляторы. Теперь, с помощью двухпозиционного переключателя, вы можете выбирать скоростной режим работы вентиляторов.
Отключите вентиляторы и БП.
Шаг 7: Монтируем нашу поделку в компьютер
Вы должны сами определиться с местом установки переключателей в корпус; можете использовать для этого пустые отсеки для дисков или смонтировать их в верхней части корпуса компьютера. Можно вмонтировать выключатели в отдельную коробку и установить ее на стол, только при этом нужно будет удлинить провода.
Игорь Самоделов
Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.
Как сделать простой регулятор оборотов, скорости вращения для компьютерного вентилятора, кулера.
Компьютерные вентиляторы могут быть полезны не только внутри компьютера. Допустим я использую такой вентилятор (размерами 120 на 120 мм, 12 В и 350 мА) для быстрой разморозки своего мини холодильника, а также его вполне хватает для проветривания небольшого помещения, после того как надымил паяльником. Хотя когда такие вентиляторы питаешь от их стандартного напряжения 12 вольт они издают относительно большой шум. Да и не всегда нужны их максимальные обороты вращения. Порой данного кулера хватает и при пониженной мощности. Но чтобы это сделать нам понадобится весьма простая схема (что приведена ниже на рисунке), которая позволит регулировать частоту вращения, его скорость, обороты.
Для бывалых электронщиков и радиотехников эта простая схема ясна и понятна, так что буду пояснять ее работы, принцип действия для новичков. Одно дело когда собрал схему, включил, и пусть себе работает. Другое же дело, когда знаешь как она функционирует, и при желании можно ввести свои какие-нибудь изменения и дополнения к имеющейся схеме.
Итак, сама схема регулятора оборотов компьютерного вентилятора состоит всего из трех деталей, а именно это биполярный транзистор типа КТ817 с любым буквенным индексом, переменного резистора на 1 ком и постоянного резистора, который желательно подобрать наиболее подходящий. Транзистор включен по схеме с общим коллектором (называемым также эмиттерным повторителем), а это значит что он усиливает только ток, при том усиления по напряжению не происходит.
Между коллектором и эмиттером стоит делитель напряжения, состоящий из двух резисторов (переменного и постоянного). Как известно, биполярный транзистор имеет три вывода, это эмиттер, коллектор и база. Переход между базой и эмиттером считается управляющим, а переход между коллектором и эмиттером считается силовым. Так вот, в изначальном состоянии (когда никакого напряжения к схеме не приложено) переход коллектор-эмиттер закрыт, он через себя ток не пропускает, его проводимость в этом состоянии имеет бесконечно малое значение (проще говоря имеет бесконечно большое сопротивление). Но вот когда мы на управляющий переход подадим напряжение более 0,6 вольт, этот силовой переход (коллектор-эмиттер) постепенно начинает открываться. И чем больше мы пропустим тока через управляющий переход, тем больше тока сможет пройти через силовой переход.
Именно от переменного резистора R1 зависит будет ли силовой переход закрыт (при этом вентилятор вращаться не будет) или же будет он полностью открыт (при этом кулер будет иметь максимальные обороты своего вращения). Естественно, чем больше мы выкрутим ручку переменного резистора, тем сильнее или медленнее будет вращаться наш компьютерный вентилятор (в зависимости в какую сторону мы будем вращать ручку). Но зачем нужен еще одни постоянные резистор R2 ? Дело в том что у переменного резистора имеется некоторая «мертвая зона», находясь в которой вращение ручки не на что не будет влиять (кулер будет стоять на месте). Это происходит из-за того, что транзистор начинает открываться только при напряжении более 0,6 вольт. До этого напряжения с транзистором ничего не происходит.
И вот чтобы напряжение от 0 до 0,6 вольт убрать с переменного резистора мы и вводим в схему постоянный резистор. Именно он возьмет на себя это самое низкое напряжение «мертвой зоны». В итоге переменный резистор будет работать от максимальных оборотов вентилятора до минимальных. Постоянный резистор R2 нужно подбирать. Лучше вначале вместо него поставить подстроечный резистор с сопротивлением около 470 ом. После того как мы подберем нужное сопротивление «мертвой зоны» можно будет ставить и постоянный, до этого подобранным сопротивлением. Оно будет примерно около 100-300 ом.
Что касается самого транзистора. В этой схеме я поставил КТ817. У него максимальный ток, который может пройти через коллектор-эмиттерный переход равен до 3 ампер. Рассеиваемая мощность без радиатора до 1 ватта, а с наличием охлаждающего радиатора эта мощность уже увеличивается аж до 25 ватт. Можно поставить любой другой биполярный транзистор с n-p-n проводимостью, у которого ток коллектор-эмиттер будет больше того, что будет проходит при использовании конкретного вентилятора. Ну, и рассеиваемая мощность должна быть не меньше той, что будет выделяться при конкретном вентиляторе.
Ну, а сама схема работает достаточно просто. Когда мы крутим ручку переменного резистора в сторону уменьшения оборотов вентилятора, то лишнее напряжение отводится на эту транзисторную схему. Проще говоря, лишнюю электрическую мощность на себя забирает эта схема, превращая ее в тепло, которое рассеивается на транзисторе и радиаторе. К сожалению, это является недостатком данной схемы. Ведь при этом не о какой экономии электроэнергии говорить не приходится. Если это для вас важно, то тогда нужно использовать схемы понижающих DC-DC преобразователей, у который с экономией дело обстоит гораздо лучше.
Несмотря на простоту этой схемы она действительно способна вполне линейно регулировать частоту вращения компьютерного вентилятора. Хотя к ней можно подключать не только кулер от компа, с маломощными электродвигателями постоянного тока, рассчитанных на напряжение 12 вольт, она также вполне способна работать. Хотя и напряжение 12 вольт не является ограничением, схема будет работать и при больших напряжениях.
НИЖЕ ВИДЕО ПО ЭТОЙ ТЕМЕ
Простейший регулятор скорости вращения компьютерного вентилятора всего на 3х деталях, схема для регулировки оборотов кулера