Вы решили установить вентиляционную систему или поставить кондиционер не ошибиться в расчетах при приобретении оборудования? Тогда статья «Как посчитать объем воздуха в помещении?» как раз для Вас!
Для начала, давайте с Вами рассмотрим несколько интересных фактов: мы ежедневно вдыхаем и выдыхаем 20 000 л воздуха. Все, чем мы дышим остается у нас в организме и возникает вопрос, а насколько пригоден вдыхаемый нами воздух?
Существует ряд основных показателей, определяющих качество окружающей нас воздушной среды, вот некоторые из них:
· Содержание в воздухе кислорода и углекислого газа, уменьшение количества кислорода провоцирует увеличение углекислого газа, что вызывают духоту в помещениях.
· Содержание в воздухе вредных веществ (канцерогенов) и пыли. Думаю, не стоит расписывать к каким последствиям может привести их увеличение. явно не к добру.
· Неприятные запахи — создают ощущение дискомфорта и раздражают нервную систему, что негативно отражается на здоровье и работоспособности.
· Влажность воздуха. Пониженная влажность может вызывать неприятные ощущения. Пагубно она влияет и на людей с заболеваниями дыхательных путей, также может вызывать обострение болезней. Также из-за пониженной влажности двери, оконные рамы и мебель могут рассыхаться, а в помещениях с повышенной влажностью (бассейны, ванные комнаты), набухать.
· Температура воздуха, которая считается комфортной составляет 21-23°С в помещении. Отклонение от нормы влияет на физическую и умственную активность, а также на состояние здоровья.
· Подвижность воздуха. Повышенная скорость воздуха в помещении приводит к ощущению сквозняка, а пониженная — к застою воздуха.
Теперь давайте рассмотрим с Вами, как высчитать и определить необходимые параметры вентиляции в Вашем помещении.
Итак, количество вентиляционного воздуха определяется для каждого помещения отдельно, учитывается содержание в воздухе вредных веществ и примесей. Если характер и количество вредных веществ невозможно подсчитать, то воздухообмен определяют по кратности (формуле):
где Vпом – объем помещения, м3;
Кр – минимальная кратность воздухообмена, 1/ч., данные приведены в таблице » кратность воздухообмена».
Как узнать объем помещения?
Для начала необходимо вычислить общий объем помещения в метрах кубических.
Используем формулу:
Длина х ширина х высота = объем помещения м3
A x B x H = V (м3)
К примеру: помещение длиной 8 м, шириной 5 м и высотой 2,8 м. Для определения объема воздуха, необходимого для вентиляции этого помещения, рассчитываем объем комнаты: 8 х 5 х 2,8 = 112 м3. Затем, используя приведенные ниже таблицы рекомендуемой кратности воздухообмена, определяем требуемую производительность вентилятора.
Определение воздухообмена в соответствии с количеством людей в помещении:
где L1 – норма воздуха на одного человека, м3/ч*чел;
NL – количество людей в помещении.
Средневзвешенная норма воздуха L1:
20-25 м3/ч на одного человека при минимальной физической активности;
45 м3/ч на одного человека при легкой физической работе;
60 м3/ч на одного человека при тяжелой физической работе.
Определение воздухообмена при выделении влаги можно расчитать по формуле:
где D – количество выделяемой влаги, г/ч;
dv – влагосодержание удаляемого воздуха, г воды/кг воздуха;
dn – влагосодержание приточного воздуха, г воды/кг воздуха;
ρ – плотность воздуха, кг/м3 (при 20°С = 1,205 кг/м3);
Определение воздухообмена для удаления излишков тепла:
где Q – выделение в помещение тепла, кВт;
tv – температура удаляемого воздуха, °С;
tn – температура приточного воздуха, °С;
ρ – плотность воздуха, кг/м3 (при 20°С = 1,205 кг/м3);
Cp – теплоемкость воздуха, кДж/(кг·К) (при 20°С; Cp=1,005 кДж/(кг·К))
Таблица кратностей воздухообмена:
Определение воздухообмена в зависимости от предельно допустимой концентрации веществ:
где GСО2 – количество выделяющегося СО2, л/ч,
УПДК – предельно-допустимая концентрация СО2 в удаляемом воздухе, л/м3,
УП – содержание газа в приточном воздухе, л/м3.
Расчет системы вентиляции
При проектировании систем вентиляции каждый инженер проводит расчеты согласно вышеупомянутых норм.
Для расчета воздухообмена в жилых помещениях следует руководствоваться этими нормами. Рассмотрим самые простые методы нахождения воздухообмена:
- по площади помещения,
- по санитарно-гигиеническим нормам,
- по кратностям
Расчет по площади помещения
Это самый простой расчет. Расчет вентиляции по площади делается на основании того, что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения, независимо от количества людей.
Расчет по санитарно-гигиеническим нормам
По санитарным нормам для общественных и административно-бытовых зданий на одного постоянно пребывающего в помещении человека необходимо 60 м3/час свежего воздуха, а на одного временного 20 м3/час.
Рассмотрим на примере:
Предположим, в доме живут 2 человека, проведем расчет по санитарным нормам согласно этим данным. Формула расчета вентиляции, включающая нужное количество воздуха выглядит так:
- n – нормируемая кратность воздухообмена, час-1;
- V – объём помещения, м3
Получим, что для спальни L2=2*60=120 м3/час, для кабинета примем одного постоянного жителя и одного временного L3=1*60+1*20=80 м3/час. Для гостиной принимаем двух постоянных жителей и двух временных (как правило, количество
постоянных и временных людей, определяется техническим заданием заказчика) L4=2*60+2*20=160 м3/час, запишем полученные данные в таблицу.
Помещение | Lпр, м3/час | Lвыт, м3/час |
Кухня | — | ≥ 90 |
Спальня | 120 | 120 |
Кабинет | 80 | 80 |
Гостинная | 160 | 160 |
Коридор | — | — |
Санузел | — | ≥ 50 |
Ванная | — | ≥ 25 |
∑ | 360 | 525 |
Расчет по кратностям
Кратность воздухообмена — это величина, значение которой показывает, сколько раз в течение одного часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от конкретного помещения (его объема). То есть, однократный воздухообмен это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве равном одному объему помещения; 0,5 -кранный воздухообмен – половину объема помещения.
В нормативном документе ДБН В.2.2-15-2005 «Жилые здания» есть таблица с приведенными кратностями по помещениям. Рассмотрим на примере, как производится рассчет по данной методике.
Кратность воздухообмена в помещениях жилых зданий
Помещения | Расчетная температура (зимой),ºС | Требования к воздухообмену | ||
Приток | Вытяжка | |||
Общая комната, спальня, кабинет |
20 | 1-кратный | — | |
Кухня | 18 | — | ||
Кухня-столовая | 20 | 1-кратный | По воздушному балансу квартиры, но не менее, м3/час |
90 |
Ванная | 25 | — | 25 | |
Уборная | 20 | — | 50 | |
Совмещенный санузел | 25 | — | 50 | |
Бассейн | 25 | По расчету | ||
Помещение для стиральной машины в квартире | 18 | — | 0,5-кратный | |
Гардеробная для чистки и глажения одежды |
18 | — | 1,5-кратный | |
Вестибюль, общий коридор, лестничная клетка, прихожая квартиры |
16 | — | — | |
Помещение дежурного персонала (консъержа/консъержки) |
18 | 1-кратный | — | |
Незадымляемая лестничная клетка |
14 | — | — | |
Машинное помещение лифтов | 14 | — | 0,5-кратный | |
Мусоросборная камера | 5 | — | 1-кратный | |
Гараж-стоянка | 5 | — | По расчету | |
Электрощитовая | 5 | — | 0,5-кратный |
Последовательность расчета вентиляции по кратностям следующая:
- Считаем объем каждого помещения в доме (объем=высота*длина*ширина).
- Подсчитываем для каждого помещения объем воздуха по формуле: L=n*V (n – нормируемая кратность воздухообмена, час-1; V – объём помещения, м3)
Для этого предварительно выбираем из таблицы «Санитарно-гигиенические нормы. Кратности воздухообмена в помещениях жилых зданий» норму по кратности воздухообмена для каждого помещения. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых, например, кухня-столовая и то и другое. Прочерк означает, что в данное помещение не нужно подавать (удалять) воздух.
Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат мы можем увеличивать до требуемой цифры. Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3. Все значения L округляем до 5 в большую сторону, т.е. значения должны быть кратны 5.
Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка. Получаем 2 цифры: ∑ Lпр и ∑ Lвыт
Составляем уравнение баланса ∑ Lпр = ∑ Lвыт. Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для тех помещений, для которых мы в 3 пункте приняли воздухообмен равным минимально допустимому значению.
Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для помещений.
Рассчет основных параметров при выборе оборудования
При выборе оборудования для системы вентиляции необходимо рассчитать следующие основные параметры:
- Производительность по воздуху;
- Мощность калорифера;
- Рабочее давление, создаваемое вентилятором;
- Скорость потока воздуха и площадь сечения воздуховодов;
- Допустимый уровень шума.
Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.
Производительность по воздуху
Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении.
Например, для помещения площадью 50 м2 с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров/час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).
Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.
Расчет воздухообмена по кратности:
- L — требуемая производительность приточной вентиляции, м3/ч;
- n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
- S — площадь помещения, м2;
- H — высота помещения, м;
Расчет воздухообмена по количеству людей:
L = N * Lнорм, где
- L — требуемая производительность приточной вентиляции, м3/ч;
- N — количество людей;
- Lнорм — норма расхода воздуха на одного человека:
в состоянии покоя — 20 м3/ч;
«офисная работа» — 40 м3/ч;
при физической нагрузке — 60 м3/ч.
Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.
Типичные значения производительности систем вентиляции:
- Для квартир — от 100 до 500 м3/ч;
- Для коттеджей — от 1000 до 5000 м3/ч;
Мощность калорифера
Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП.
Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны, например, для Москвы она равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах допускается устанавливать калориферы, имеющие мощность меньше расчетной. Но при этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.
При расчете мощности калорифера необходимо учитывать следующие ограничения:
- Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
- Максимально допустимый ток потребления. Величину тока (А), потребляемого калорифером, можно вычислить по формуле:
- I — максимальный потребляемый ток, А;
- Р — мощность калорифера, Вт;
- U — напряжение питания: (220 В — для однофазного питания; для трехфазной сети расчёт несколько иной).
В случае, если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:
T = 2,98 * P / L, где
- T — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;
- Р — мощность калорифера, Вт;
- L — производительность вентиляции, м3/ч.
Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов и загородных домов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной или паровой калорифер). В любом случае, если есть возможность, лучше использовать водяные или паровые калориферы. Экономия на обогреве в этом случае получается колоссальная.
Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума
После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.
Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха.
Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве и стоят они дороже. Поэтому, при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.
Для бытовых систем приточно-вытяжной вентиляции обычно используются воздуховоды диаметром 160. 250 мм или сечением 400х200мм. 600х350мм и распределительные решетки размером 100200 мм — 1000500 мм.
Как рассчитывать воздухообмен в помещениях
Вентиляционное оборудование отличается по производительности, протяженности и сечению воздуховодов. К вентиляции помещений бытового и промышленного назначения выдвигают разные требования, поэтому и выбор техники должен быть индивидуальным. Главная задача – достигнуть хорошего воздухообмена. Как рассчитать этот параметр, чтобы не ошибиться с характеристиками инженерных систем?
2 базовые методики расчета воздухообмена
Самый простой и универсальный способ – рассчитать воздухообмен по площади, без учета других факторов. Для жилых помещений достаточно умножить количество квадратных метров на регламентированное значение – 3 м 3 /час свежего воздуха. То есть для комнаты 15 м 2 приток воздуха должен составлять 3 х 15 = 45 м 3 /час.
Чтобы расчеты были более точными и учитывали назначение помещений, чаще всего используют две другие методики.
Этот метод самый сложный, но наиболее объективный и близкий к реальности. Кратность показывает, сколько раз за один час комната полностью наполняется свежим воздухом и очищается от использованного. В 12 СП 44.13330.2011 «Административные и бытовые здания» подаются нормы кратностей воздухообмена для различных помещений. Для подсчета нужно знать объем: достаточно умножить длину, ширину и высоту комнаты.
Воздухообмен рассчитывают по такой формуле:
n x V или кратность х объем помещения
К примеру, согласно санитарным нормам, в комнате для отдыха необходимо обеспечить двукратный приток и трехкратную вытяжку (при условии притока не менее 30 м 3 /час на человека). При площади 15 м 2 и высоте потолков 3 м расходное значение приточного воздуха составит 2 х 15 х 3 = 90 м 3 /час, а вытяжного – 3 х 15 х 3 = 135 м 3 /час.
Иногда при выборе системы кондиционирования в здании параметры воздухообмена определяют по числу людей. Значение будет разным для постоянно пребывающих (60 м 3 /час), временных, или посетителей, (20 м 3 /час) и спортсменов (80 м 3 /час). Если в доме живут двое, то для спальни этот показатель будет 2 х 60 = 120 м 3 /час (двое постоянных), а для гостиной – 2 х 60 2 х 20 = 160 м 3 /час (условно – по двое постоянных и временных).
В офисе с тремя рабочими местами и двумя стульями для гостей расход приточного воздуха будет 3 х 60 2 х 20 = 220 м 3 /час. Вытяжного, как правило, – меньше на 10-30 %.
Какие еще методики подсчета используют
Существуют специфические методики подсчета воздухообмена для квадратных метров с особыми условиями:
Методика расчета по вредным веществам актуальна для производственных помещений, в которых функционируют промышленные и полупромышленные кондиционеры. Для подсчета используют таблицы предельно допустимых концентраций потенциально опасных веществ (ГН 2.2.5.3532-18).
Методики расчета дают разные результаты, однако все они, как ни странно, правильные. Если брать за основу площадь или кратность обновления воздуха, то покупка системы вентиляции обойдется дешевле, чем если ориентироваться на санитарно-гигиенические нормы. Однако именно этот подход, с ориентиром на количество людей, позволяет создать в помещении максимально комфортные условия.
Нашли ошибку? Выделите её и нажмите Ctrl+Enter. Спасибо, что помогаете нам стать лучше!
hiconix.ru © 1995
Расчет систем вентиляции
Калькулятор для расчета вентиляции
Теперь, зная из каких компонентов состоит система вентиляции, мы можем приступить к ее комплектации. В этом разделе мы расскажем о том, как рассчитать приточную вентиляцию для объекта площадью до 300–400 м² – квартиры, небольшого офиса или коттеджа. Естественная вытяжная вентиляция на таких объектах обычно уже установлена на этапе строительства, поэтому рассчитывать ее не требуется. Следует отметить, что в квартирах и коттеджах вытяжная вентиляция обычно проектируется из расчета однократного воздухообмена, в то время как приточная обеспечивает, в среднем, двукратный воздухообмен. Это не является проблемой, поскольку часть приточного воздуха будет удаляться через неплотности в окнах и дверях, не создавая избыточной нагрузки на вытяжную систему. В нашей практике мы никогда не сталкивались с требованием службы эксплуатации многоквартирного здания ограничить производительность приточной системы вентиляции (в то же время установка вытяжных вентиляторов в каналы вытяжной вентиляции часто бывает запрещена). Если же вы не хотите разбираться в методике расчета и формулах, то можете воспользоваться Калькулятором, который выполнит все необходимые расчеты.
Производительность по воздуху
-
Расчет воздухообмена по количеству людей:
L = N * Lnorm, где
L требуемая производительность приточной вентиляции, м³/ч;
N количество людей;
Lnorm норма расхода воздуха на одного человека:
- в состоянии покоя (сна) 30 м³/ч;
- типовое значение (по СНиП) 60 м³/ч;
L = n * S * H, где
L требуемая производительность приточной вентиляции, м³/ч;
n нормируемая кратность воздухообмена:
для жилых помещений – от 1 до 2, для офисов – от 2 до 3;
S площадь помещения, м²;
H высота помещения, м;
- Для отдельных комнат и квартир от 100 до 500 м³/ч;
- Для коттеджей от 500 до 2000 м³/ч;
- Для офисов от 1000 до 10000 м³/ч.
Расчет воздухораспределительной сети
После определения производительности вентиляции можно переходить к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов), и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Схему составляют таким образом, чтобы при минимальной общей длине трассы система вентиляции могла подавать расчетное количество воздуха во все обслуживаемые помещения. Далее по этой схеме рассчитывают размеры воздуховодов и подбирают воздухораспределители.
Расчет размеров воздуховодов
Для расчета размеров (площади сечения) воздуховодов нам нужно знать объем воздуха, проходящий через воздуховод в единицу времени, а также максимально допустимую скорость воздуха в канале. При увеличении скорости воздуха размеры воздуховодов уменьшаются, но уровень шума и сопротивление сети возрастают. На практике для квартир и коттеджей скорость воздуха в воздуховодах ограничивают на уровне 3–4 , поскольку при более высоких скоростях воздуха шум от его движения в воздуховодах и распределителях может стать слишком заметным.
Следует также учитывать, что использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, поскольку их сложно разместить в запотолочном пространстве. Снизить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В тоже время монтировать сеть из круглых гибких воздуховодов проще и быстрее.
Итак, расчетная площадь сечения воздуховода определяется по формуле:
Sс – расчетная площадь сечения воздуховода, см²;
L – расход воздуха через воздуховод, м³/ч;
V – скорость воздуха в воздуховоде, м/с;
2,778 – коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).
Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.
Фактическая площадь сечения воздуховода определяется по формуле:
– для круглых воздуховодов,
– для прямоугольных воздуховодов, где
S – фактическая площадь сечения воздуховода, см²;
D – диаметр круглого воздуховода, мм;
A и B – ширина и высота прямоугольного воздуховода, мм.
В таблице приведены данные по расходу воздуха в круглых и прямоугольных воздуховодах при разных скоростях движения воздуха.
Таблица 1. Расход воздуха в воздуховодах
Параметры воздуховодов | Расход воздуха (м³/ч) при скорости воздуха: |
||||||
Диаметр круглого воздуховода |
Размеры прямоугольного воздуховода |
Площадь сечения воздуховода |
2 м/с | 3 м/с | 4 м/с | 5 м/с | 6 м/с |
80×90 мм | 72 см² | 52 | 78 | 104 | 130 | 156 | |
Ø 100 мм | 63×125 мм | 79 см² | 57 | 85 | 113 | 142 | 170 |
63×140 мм | 88 см² | 63 | 95 | 127 | 159 | 190 | |
Ø 110 мм | 90×100 мм | 90 см² | 65 | 97 | 130 | 162 | 194 |
80×140 мм | 112 см² | 81 | 121 | 161 | 202 | 242 | |
Ø 125 мм | 100×125 мм | 125 см² | 90 | 135 | 180 | 225 | 270 |
100×140 мм | 140 см² | 101 | 151 | 202 | 252 | 302 | |
Ø 140 мм | 125×125 мм | 156 см² | 112 | 169 | 225 | 281 | 337 |
90×200 мм | 180 см² | 130 | 194 | 259 | 324 | 389 | |
Ø 160 мм | 100×200 мм | 200 см² | 144 | 216 | 288 | 360 | 432 |
90×250 мм | 225 см² | 162 | 243 | 324 | 405 | 486 | |
Ø 180 мм | 160×160 мм | 256 см² | 184 | 276 | 369 | 461 | 553 |
90×315 мм | 283 см² | 204 | 306 | 408 | 510 | 612 | |
Ø 200 мм | 100×315 мм | 315 см² | 227 | 340 | 454 | 567 | 680 |
100×355 мм | 355 см² | 256 | 383 | 511 | 639 | 767 | |
Ø 225 мм | 160×250 мм | 400 см² | 288 | 432 | 576 | 720 | 864 |
125×355 мм | 443 см² | 319 | 479 | 639 | 799 | 958 | |
Ø 250 мм | 125×400 мм | 500 см² | 360 | 540 | 720 | 900 | 1080 |
200×315 мм | 630 см² | 454 | 680 | 907 | 1134 | 1361 | |
Ø 300 мм | 200×355 мм | 710 см² | 511 | 767 | 1022 | 1278 | 1533 |
160×450 мм | 720 см² | 518 | 778 | 1037 | 1296 | 1555 | |
Ø 315 мм | 250×315 мм | 787 см² | 567 | 850 | 1134 | 1417 | 1701 |
250×355 мм | 887 см² | 639 | 958 | 1278 | 1597 | 1917 | |
Ø 350 мм | 200×500 мм | 1000 см² | 720 | 1080 | 1440 | 1800 | 2160 |
250×450 мм | 1125 см² | 810 | 1215 | 1620 | 2025 | 2430 | |
Ø 400 мм | 250×500 мм | 1250 см² | 900 | 1350 | 1800 | 2250 | 2700 |
Расчет размеров воздуховода производится отдельно для каждой ветки, начиная с магистрального канала, к которому подключается вентустановка. Отметим, что скорость воздуха на ее выходе может достигать 6–8 , поскольку размеры присоединительного фланца вентустановки ограничены размером ее корпуса (шум, возникающий внутри нее, гасится шумоглушителем). Для уменьшения скорости воздуха и снижения уровня шума размеры магистрального воздуховода часто выбирают больше размеров фланца вентустановки. В этом случае подключение магистрального воздуховода к вентустановке производится через переходник. В бытовых системах вентиляции обычно используются круглые воздуховоды диаметром от 100 до 250 мм или прямоугольные эквивалентного сечения.
Выбор воздухораспределителей
Зная расход воздуха можно подобрать по каталогу воздухораспределители с учетом соотношения их размеров и уровня шума (площадь сечения воздухораспределителя, как правило, в 1,5–2 раза больше площади сечения воздуховода). Для примера рассмотрим параметры популярных воздухораспределительных решеток Арктос серий АМН, АДН, АМР, АДР:
В каталоге Арктос указываются их размеры (колонка A x B) и площадь сечения (F0), а также параметры при заданных расходах воздуха (колонки L0). С увеличением расхода воздуха возрастает уровень шума (Lwa) и падение давления (ΔPп), а также увеличивается дальнобойность воздушной струи. В соответствующих колонках указывается расстояние от решетки, на котором скорость потока воздуха Vx будет равна 0,2 или 0,5 . Для жилых помещений подбор решеток обычно ведется по колонкам с уровнем шума до 25 дБ(А), в офисах обычно допустим уровень шума до 35 дБ(А). Для того, чтобы фактические параметры решетки соответствовали тем, что указаны в каталоге, необходимо обеспечить равномерное распределение воздуха по всей ее площади. Для этого желательно использовать камеру статического давления или адаптер с боковым подключением, в котором поток воздуха перед попаданием на решетку поворачивает под прямым углом. В бытовых системах вентиляции обычно используют распределительные решетки размером от 100×100 мм до 400×200 мм или круглые диффузоры эквивалентного сечения.
Расчет сопротивления сети
- 75–100 Па для квартир площадью от 50 до 150 м².
- 100–150 Па для коттеджей площадью от 150 до 350 м².
Сопротивление сети слабо зависит от количества обслуживаемых помещений и определяется протяженностью и конфигурацией самого длинного пути от входа (воздухозаборной решетки) до выхода (воздухораспределителя). Отметим, что приведенные значения справедливы только для систем вентиляции на базе вентиляционной установки, но не наборной системы, поскольку нам не нужно учитывать падение давления на калорифере, фильтре грубой очистки, воздушном клапане и других элементах вентустановки (ее вентиляционная характеристика строится уже с учетом сопротивления всех этих элементов).
Мощность калорифера
После определения производительности вентиляции мы можем рассчитать требуемую мощность калорифера. Для этого нам понадобятся значения температуры воздуха на выходе системы и минимальной температуры наружного воздуха в холодный период года. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны и для Москвы принимается равной -26°С. Таким образом, при включении калорифера на полную мощность, он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, можно использовать калорифер меньшей мощности, при условии, что система вентиляции имеет регулировку производительности: это позволит в холодный период поддерживать комфортную температуру воздуха за счет снижения скорости вентилятора.
Мощность калорифера рассчитывается по формуле:
Р мощность калорифера, кВт;
ΔT разность температур воздуха на выходе и входе калорифера,°С.
Для Москвы ΔT=44°С, для других регионов – определяется по СНиП;
L производительность вентиляции, м³/ч.
Cv объемная теплоемкость воздуха, равная 0,336 Вт·ч/м³/°С. Этот параметр зависит
от давления, влажности и температуры воздуха, но в расчетах мы этим пренебрегаем.
После расчета мощности калорифера нужно выбрать напряжение питания (для электрического калорифера): 220В / 1 фаза или 380В / 3 фазы. При мощности калорифера свыше 4–5 кВт желательно использовать фазное подключение. Максимальный ток, потребляемый калорифером, можно рассчитать по формуле:
I = P / U, где
I максимальный потребляемый ток, А;
Р мощность калорифера, Вт;
U напряжение питание:
- 220В для однофазного питания;
- 660В (3 × 220В) для трехфазного питания (при подключении нагревателей «звездой» между 0 и фазой ).
Типичные значения мощности калорифера – от 1 до 5 кВт для квартир и от 5 до 50 кВт для офисов и коттеджей. При высокой расчетной мощности лучше устанавливать водяной калорифер, который использует в качестве источника тепла воду из системы центрального или автономного отопления.
Расчет потребляемой электроэнергии
Для систем вентиляции с электрическим калорифером основные затраты электроэнергии приходятся на нагрев холодного приточного воздуха. Чтобы понять, сколько же придется платить за электроэнергию, недостаточно знать только мощность калорифера, ведь с максимальной мощностью калорифер будет работать непродолжительное время, только в период сильных морозов. При повышении температуры наружного воздуха потребляемая мощность уменьшается (все приточные установки автоматически регулируют мощность калорифера для поддержания на выходе заданной температуры), поэтому средняя потребляемая мощность будет заметно ниже максимальной.
Чтобы оценить затраты энергии на нагрев воздуха в течение всего года нужно знать средние температуры воздуха по месяцам (для двухтарифного счетчика потребуются отдельно дневные и ночные температуры). По этим данным можно рассчитать стоимость потребляемой энергии:
CSmonth = (ΔTday * L * Сv * PRday * 16 + ΔTnight * L * Сv * PRnight * 8) * Ndays / 1000, где
CSmonth – стоимость израсходованной за месяц электроэнергии, рублей.
ΔTday и ΔTnight – дневной и ночной перепад температур, °С. Рассчитывается отдельно для каждого месяца как разность заданной температуры на выходе калорифера (обычно ) и среднемесячной дневной или ночной температуры воздуха.
PRday и PRnight – дневная и ночная стоимость электроэнергии, рублей за кВт·ч. Эта стоимость умножается на длительность действия (в часах) дневного и ночного тарифов, для Москвы на 16 и 8 соответственно.
Ndays – число дней в месяце.
В калькуляторе по этой формуле рассчитывается стоимость электроэнергии, затраченной на нагрев воздуха в период с сентября по май. Информация о среднемесячной дневной и ночной температуре воздуха взята из сервиса Яндекс.Погода, тарифы на электроэнергию указаны на 1 июля 2012 для квартир с электроплитами. Фактическая стоимость электроэнергии, разумеется, будет немного иной, поскольку температура воздуха может отличаться от средней в ту или другую сторону, тем не менее полученный результат позволит нам достаточно точно оценить уровень затрат на эксплуатацию системы вентиляции.
Для снижения стоимости эксплуатации можно использовать , которая позволяет снизить расчетную мощность калорифера на 20–30%, а среднее потребление энергии на 30–50%. При этом увеличение стоимости оборудования составит всего 15–20%, что позволит полностью окупить это удорожание за один год. Подробнее о таких системах вентиляции можно прочитать статье .
Выбор приточной установки
Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел Расчет сопротивления сети).
Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.
Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².
Расчетное значение производительности – 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение – около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.
Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.
- Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
- «Задушить» вентустановку с помощью балансировочных , закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
- Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
- Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.
Нужно ли ориентироваться на СНиП?
Во всех расчетах, которые мы проводили, использовались рекомендации СНиП и МГСН. Эта нормативная документация позволяет определить минимально допустимую производительность вентиляции, обеспечивающую комфортное пребывание людей в помещении. Другими словами требования СНиП направлены в первую очередь на минимизацию стоимости системы вентиляции и затрат на ее эксплуатацию, что актуально при проектировании вентсистем для административных и общественных зданий.
В квартирах и коттеджах ситуация иная, ведь вы проектируете вентиляцию для себя, а не для усредненного жителя и вас никто не заставляет придерживаться рекомендаций СНиП. По этой причине производительность системы может быть как выше расчетного значения (для большего комфорта), так и ниже (для уменьшения энергопотребления и стоимости системы). К тому же субъективное ощущение комфорта у всех разное: достаточно 30–40 м³/ч на человека, а для будет мало и 60 м³/ч.
Однако если вы не знаете, какой воздухообмен вам нужен для комфортного самочувствия, лучше придерживаться рекомендаций СНиП. Поскольку современные приточные установки позволяют регулировать производительность с пульта управления, вы сможете найти компромисс между комфортом и экономией уже в процессе эксплуатации системы вентиляции.
Уровень шума системы вентиляции
О том, как сделать «тихую» систему вентиляции, которая не будет мешать спать по ночам, рассказывается в разделе Вентиляция для квартиры и частного дома.
Проектирование системы вентиляции
Для точного расчета параметров системы вентиляции и разработки проекта обращайтесь в Проектный отдел. Вы также можете рассчитать с помощью калькулятора ориентировочную стоимость системы вентиляции частного дома.