Как подключить аккумуляторы для увеличения емкости
Перейти к содержимому

Как подключить аккумуляторы для увеличения емкости

  • автор:

Как подключить аккумуляторы к ИБП, последовательное или параллельное соединение

Источники бесперебойного питания (ИБП) ELTENA с индексом LT предназначены для обеспечения длительного времени автономной работы критичного оборудования. Для этого к ним подключаются комплекты внешних батарей. Напряжение цепи постоянного тока (а значит, и количество последовательно соединенных подключаемых батарей) определяется характеристиками ИБП и указывается в спецификации. Мощные ИБП (UPS) обычно имеют более высокое напряжение цепи постоянного тока в целях повышения КПД бесперебойника, и для снижения потерь, возникающих там, где протекают высокие токи. Для обеспечения требуемого напряжения, как правило, используются стандартные необслуживаемые аккумуляторные батареи (АКБ) напряжением 12 Вольт. Чтобы получить более высокое напряжение или увеличить ёмкость, необходимо соединить батареи в цепь.

При подключении аккумуляторных батарей к источникам бесперебойного питания, особенно при использовании ИБП с внешними АКБ, возникают вопросы и проблемы их объединения в линейки, последовательного/параллельного соединения аккумуляторов, определения емкости и общего напряжения получившегося соединения.

Используются 3 способа соединения аккумуляторов:
— последовательное, при котором суммируется напряжение;
— параллельное, суммируется емкость;
— комбинированное, при котором параллельно соединяются линейки последовательно соединенных аккумуляторных батарей.

Таким образом, появляется возможность строить батарейные комплекты, напряжение и электрическая емкость которых ограничиваются только занимаемым ими рабочим пространством и количеством параллельно соединяемых линеек (не рекомендуется соединять в параллель более 4-5 линеек).

Также стоит отметить, что для более компактного размещения аккумуляторов ELTENA предлагает батарейные шкафы различного размера и вместительности.

Способы подключения аккумуляторных батарей к ИБП (UPS)

  • Последовательное соединение аккумуляторных батарей
  • Параллельное соединение аккумуляторных батарей
  • Комбинированное соединение на примере ИБП ELTENA Monolith E1000LT
Последовательное соединение аккумуляторных батарей

Последовательное соединение АКБ

Источники тока последовательно

При последовательном подключении аккумуляторов суммируется напряжение (U), при подключении нагрузки с каждой АКБ идет ток, равный общему току в цепи. Емкость (E) системы остается такая же, как у одной из батарей этой цепи. Например: Вы подключили в цепь последовательно 3 аккумуляторные батареи 12 В и 100 Ач. В итоге на клеммах источника бесперебойного питания Вы получите U=3*12=36 В, E=100 Ач.

При последовательном соединении не допустимо использование АКБ различной ёмкости, разных типов, с разным напряжением зарядки. Мы рекомендуем Вам подключать по данной схеме только батареи одного производителя, с одинаковыми характеристиками и желательно из одной партии. Также, длина и сопротивление соединительных проводов, должны быть одинаковыми. Если не соблюдать это условие, на клеммах аккумуляторов может возникнуть различное напряжение. АКБ с меньшим уровнем заряда будут чрезмерно разряжаться, а аккумуляторы с самым высоким уровнем заряда рискуют получить перезаряд при работе в сетевом режиме (напряжение заряда будет завышено, что приведет к повышенному износу аккумуляторов, или выходу их из строя).

Параллельное соединение аккумуляторных батарей

Параллельное соединение АКБ

Источники тока параллельно

Параллельное соединение АКБ позволит Вам увеличить ёмкость аккумуляторных батарей (а следовательно и время автономной работы вашего оборудования), не изменяя напряжение цепи постоянного тока. Это будет полезно, если вы хотите подключить несколько аккумуляторов к источнику бесперебойного питания, который работает от 12 В. Например, у Вас есть источник бесперебойного питания с цепью 12 В, и у вас есть 3 аккумулятора, каждый по 100 Ач. При параллельном подключении на клеммах ИБП получим U=12 В, E=3*100=300 Ач.

Комбинированное соединение на примере ИБП ELTENA Monolith E1000LT

Время автономной работы источника бесперебойного питания (время работы от аккумуляторов) с конкретной нагрузкой зависит только от емкости подключенных к ИБП аккумуляторных батарей. Увеличение времени автономной работы, при неизменной нагрузке, возможно только путем увеличения емкости АКБ, т.е. параллельным подключением к уже существующему комплекту дополнительных линеек (сборок) у которых U=24 В (две последовательно соединенные АКБ) и при этом, очень важно, чтобы общая емкость получившегося комплекта не должна превысить максимальную, рекомендованную для этого ИБП.

Необходимо помнить:
— при последовательном соединении сумма напряжений всех АКБ равна общему (в данном случае, две АКБ, соответственно, 24 В), а общая емкость линейки из двух последовательно соединенных АКБ равна емкости одной, каждой, АКБ (в данном случае — 45 Ач).
— при параллельном соединении линеек (сборок) напряжение одной линейки и общее равны (в рассматриваемом примере — 24 В), а сумма емкостей всех линеек равна общей (в рассматриваемом случае — E=45*3=135 Ач).

Для ИБП Monolith E1000LT рекомендованная емкость комплекта аккумуляторных батарей — до 150 Ач. Соответственно, для увеличения времени автономии можно к уже работающим аккумуляторам 45 Ач дополнительно присоединить параллельно две линейки по две последовательно соединенные АКБ 45 Ач. Получим батарейный комплект U=24 В, E=135 Ач.

Для правильного подбора источников бесперебойного питания или аккумуляторных батарей для конкретного ИБП, выбора их типа, ёмкости и способа объединения в цепь, рекомендуем Вам проконсультироваться с нашими инженерами. Мы подберем оптимальную для Вас конфигурацию ИБП + батареи, рассчитаем время автономной работы оборудования, предложим оптимальную цену на источники бесперебойного питания!

Ранее мы писали о том, что НЕ рекомендуется использовать автомобильные стартерные аккумуляторы с ИБП.

Вопросы направляйте по email: info@eltena.com
Или по тел.: +7 (495) 787-68-54 (09:30 — 18:00 МСК)

Последовательная и параллельная конфигурация соединения аккумулятров

Электрические батареи могут достигать необходимого рабочего напряжения путем последовательного подсоединения нескольких элементов — каждый элемент добавляет свой показатель напряжения к общему напряжению всей системы. Параллельное же соединение обеспечит более высокий показатель емкости и силы тока — суммарная емкость такой системы будет равна сумме емкостей всех подключенных элементов, сила тока также будет равняться сумме значений всех элементов.

Некоторые системы могут состоять из нескольких параллельных или последовательных соединений. Аккумуляторы для портативных компьютеров обычно состоят из четырех 3,6 В литий-ионных элементов, соединенных последовательно для обеспечения напряжения 14,4 В и двух соединенных параллельно для увеличения емкости от 2400 мАч до 4800 мАч. Такая конфигурация называется 4S2P, что соответственно и расшифровывается как 4 Serial 2 Parallel (что в переводе с английского — 4 последовательных и 2 параллельных соединения). Между такими элементами в аккумуляторе обязательно присутствует изоляционный материал, во избежание короткого замыкания.

Standard Range AGM Deep Cycle Range AGM Gellyte Range GEL
свинцово-кислотные аккумуляторы аккумуляторы для газового котла гелевые аккумуляторы 12 вольт 100 ач и 200 ач
10 — 12 лет / 600 циклов 10 — 12 лет / 700 циклов 10 — 12 лет / 750 циклов
универсальная серия AGM для глубоких разрядов AGM универсальная серия GEL

Элементы большинства электрохимических систем способны к последовательному и параллельному соединению. Важно использовать элементы одного типа, с одинаковым напряжением и емкостью, и никогда не формировать соединение из элементов разных марок и размеров, так как более слабый элемент вызовет дисбаланс всей системы. Это особенно важно при последовательном соединении, так как вся система будет зависеть от самого слабого элемента. В этом случае уместна аналогия с цепью, где слабое звено нивелирует прочность всей цепи (рисунок 1).

Сравнение последовательного соединения электрических батарей с цепью

Рисунок 1: Сравнение последовательного соединения электрических батарей с цепью. Каждое звено этой цепи можно сравнить с электрохимическим элементом питания в последовательно соединенной системе, слабость звена или элемента приведет к коллапсу всей системы.

Слабый элемент может выявиться не сразу, при щадящих режимах работы нагрузка на него не велика, однако при возрастании нагрузки он исчерпывает свой ресурс очень быстро. При зарядке такой элемент полностью заряжается быстрее других, следовательно, остальное время на него действует излишняя зарядка, что приводит к вредному перезаряду. При разряде же он выходит из строя первым, заставляя остальные элементы питать нагрузку, уже превышающую номинал всей системы. Элементы в аккумуляторных системах обязательно должны иметь одинаковые характеристики, особенно в условиях высоких нагрузок.

Trojan Marine RV AGM Deep Cycle Trojan GEL Deep Cycle
тяговые лодочные аккумуляторы 12 вольт Тяговые аккумуляторы agm Аккумуляторы для поломоечных машин
10 — 12 лет / 700 циклов 10 — 12 лет / 600 циклов 10 — 12 лет / 800 циклов
для речного и морского траспорта для электромоторов, солнечных электростанций, высоких нагрузок

1. Области применения одиночных элементов питания

Система из одного электрохимического элемента питания является простейшим примером электрической батареи. Такая система не требует предварительного согласования, а защитная схема, в случае если это литий-ионная технология, крайне проста. Типичными примерами таких систем являются 3,60 В литий-ионные аккумуляторы для мобильных телефонов и планшетов. Другим примером использования одноэлементных батарей являются настенные часы, где чаще всего используется 1,5 В щелочная батарейка.

Номинальное напряжение элемента на основе никеля составляет 1,2 В, щелочной — 1,5 В, серебряно-оксидной — 1,6 В, а свинцово-кислотной — 2,0 В. Первичные литиевые элементы обеспечивают напряжение в диапазоне от 3,0 до 3,9 В, в их числе литий-ионные — 3,6 В, литий-фосфатные — 3,2 В, литий-титанатные — 2,4 В.

Литий-марганцевая и другие электрохимические системы на основе лития часто могут обеспечить напряжение элемента на уровне 3,7 В и выше. Это связано не столько с электрохимическими аспектами, сколько является следствием оптимизации под более высокий показатель количества ватт-часов путем уменьшения внутреннего сопротивления элемента. Но в основном, элементы этой электрохимической системы производятся со стандартным показателем напряжения в 3,6 В.

2. Последовательное соединение

Портативное оборудование, требующее высоких значений напряжения, использует в качестве источника питания два или больше электрических элемента, соединенных последовательно. На рисунке 2 показан батарейный блок из четырех 1,2 В никелевых элементов, соединенных последовательно. Такой блок создан для получения напряжения 4,8 В и известен как 4S. Для сравнения, свинцово-кислотный аккумулятор с шестью 2 В элементами (“банками”) будет генерировать 12 В, а четыре 3,6 В литий-ионных элемента дадут 14,4 В. (BU-303: Номинальное напряжение аккумулятора)

Последовательное соединение четырех элементов (4S)

Рисунок 2: Последовательное соединение четырех элементов (4S). Последовательное присоединение элемента увеличит напряжение, сила тока останется неизменной.

Marin GEL Range Deep Cycle GEL Range Solar GEL Range
аккумулятор для электромотора аккумуляторы глубокого разряда аккумуляторы для солнечных батарей
10 — 12 лет / 800 циклов 10 — 12 лет / 800 циклов 10 — 12 лет / 800 циклов
для электромоторов лодок и катеров для глубоких циклических разрядов для солнечных электростанций

Если вам нужно особое значение напряжения, например, 9,5 вольт, последовательно подключите пять свинцово-кислотных, восемь никель-металл-гидридных или никель-кадмиевых, или три литий-ионных элемента. Конечное напряжение батарейного блока может быть немного большим, чем номинальное устройства, приложение 12 В вместо 9,5 В позволит его эксплуатировать. Большинство устройств, рассчитанных на питание электрическими батареями, могут выдерживать некоторое превышение номинального напряжения, но не следует этим злоупотреблять, слишком большое превышение напряжения может повредить устройство.

Использование электрической батареи с высоким напряжением позволяет уменьшить потери и увеличить КПД. Беспроводные инструменты работают на 12 В и 18 В аккумуляторах, более высококлассные используют даже 24 В и 36 В. Большинство электровелосипедов комплектуются 36 В литий-ионным аккумулятором, некоторые даже идут с 48 В. Существуют инициативы в автомобильной промышленности по поводу увеличения напряжения стартерного аккумулятора с 12 В (14В) до 36 В (42 В), путем размещения в аккумуляторе 18 свинцово-кислотных элементов (“банок”). Но этой инициативе препятствует необходимость изменения свойств электрических компонентов в автомобиле и повышенный риск возникновения искр в механических переключателях.

Некоторые гибридные автомобили работают на 48 В литий-ионном аккумуляторе и в дополнение к этому используют преобразователь напряжения для получения стандартных 12 вольт для электрической системы автомобиля. Также возможен вариант с отдельной установкой стандартного стартерного аккумулятора для запуска двигателя внутреннего сгорания. Первые гибридные автомобили использовали 148 В аккумуляторы, электромобили имеют аккумуляторную систему напряжением 450-500 В. Такая система состоит из более чем 100 литий-ионных элементов, соединенных последовательно.

Аккумуляторные системы высокого напряжения требуют тщательного согласования элементов, особенно при подключении к сильной нагрузке или при работе в низкотемпературных условиях. Так как в таких последовательно соединенных системах выход из строя всего лишь одного элемента приводит к коллапсу всей системы, существуют специальная система защиты, которая выявляет неисправный элемент и позволяет “обходить” его. Такой метод конечно же уменьшает общее напряжение системы, но как временное решение весьма практичен, и главное позволяет всей системе сохранить работоспособность.

Согласование элементов становится проблемой при необходимости замены неисправного элемента в устаревшей аккумуляторной системе. Более современные элементы, как правило, имеют более высокую емкость, в результате чего в такой системе может возникнуть дисбаланс. Сварная конструкция аккумуляторной системы также усложняет ремонт, и в связи с этим чаще всего вся аккумуляторная система меняется полностью.

AGM Deep Cycle
GEL Deep Cycle Литиевые (LiFePO4)
аккумуляторы AGM аккумуляторы GEL аккумуляторы литий-железо-фосфатные
10 лет / 400 циклов 10 лет / 500 циклов 20 лет / 2200 циклов
универсальное применение для циклических разрядов для частых глубоких разрядов

В электромобилях, где цена аккумуляторной системы составляет весомую часть от стоимости всего транспортного средства, полная замена этой системы видится абсурдной. Поэтому производители делят аккумуляторную систему на модули, каждый из которых состоит из определенного числа элементов. И если такой элемент выйдет из строя, замена будет необходима не всей системе, а определенному модулю. Возникновение трудностей возможно в случае, если доступны только новые модули, укомплектованные более современными элементами. (Смотрите: Как восстановить аккумуляторную систему).

На рисунке 3 показан батарейный блок, в котором элемент-3 производит только 0,6 В вместо 1,20 В. С пониженным общим напряжением этот батарейный блок разрядится раньше обычного. Напряжение будет проседать, и в конце концов питаемое устройство отключится.

Последовательное соединение с неисправным элементом

Рисунок 3: Последовательное соединение с неисправным элементом. Неисправный элемент-3 понижает общее напряжение и приводит к преждевременному прекращению работы подключенного устройства.

Аккумуляторные системы в беспилотных летательных аппаратах или других устройствах, требующих высокие токи нагрузки, часто демонстрируют неожиданное падение напряжения, если один элемент в системе является слабым. Пиковые нагрузки увеличивают стресс на аккумуляторную систему, вызывая коллапс еще быстрее. Измерение напряжения сразу после зарядки не поможет для идентификации слабого элемента — его напряжение без нагрузки будет относительно нормальным; для решения этой проблемы существуют специальные анализаторы электрических батарей.

3. Параллельное соединение

Если для устройства требуется высокое значение силы тока и удовлетворить это требование одним элементом невозможно, следует использовать параллельное соединение элементов. Большинство электрохимических систем позволяют использование параллельной конфигурации подсоединения, но с некоторыми побочными эффектами. На рисунке 4 показаны четыре параллельно соединенных элемента, такая конфигурация еще называется 4P (4 Parallel). Напряжение этой системы остается 1,20 В, но сила тока и емкость увеличены в четыре раза.

Параллельное соединение четырех электрических элементов

Рисунок 4: Параллельное соединение четырех электрических элементов. Благодаря параллельной конфигурации подсоединения сила тока и емкость увеличиваются, напряжение же остается неизменным.

Выход из строя единичного элемента при параллельном соединении не столь критично, как при последовательном. Такая проблема конечно уменьшит нагрузочные характеристики всей системы, но хотя бы не выведет ее из строя. Можно провести аналогию с цилиндрами двигателя внутреннего сгорания — автомобиль сможет ехать и на трех цилиндрах, даже если у него их всего четыре. С другой стороны, при наличии неисправного элемента в параллельных системах существует больший риск возникновения короткого замыкания, так как такой элемент как бы высасывает энергию из других, в результате чего возрастает риск возгорания. Большинство таких коротких замыканий довольно умеренны и проявляются в виде повышенного саморазряда.

Причиной короткого замыкания может быть поляризация или возникновение дендритов в элементе. Большие аккумуляторные системы часто снабжены предохранителем, который отключает неисправный элемент из параллельной цепи, если он был закорочен. На рисунке 5 показана параллельная конфигурация с одним неисправным элементом.

Параллельное соединение с одним неисправным элементом

Рисунок 5: Параллельное соединение с одним неисправным элементом. Слабый элемент не повлияет на напряжение всей системы, но уменьшит общее время работы за счет уменьшения емкости системы. Закороченный элемент может вызвать перегрев и стать причиной возникновения пожара.

Батарейный монитор Защита от глубокого разряда Батарейный балансир
Батарейный монитор Защита от глубокого разряда Стабилизатор тока заряда аккумулятора
контроль более 25 параметров, история и синхронизация защита от низкого и высокого напряжения, возможность регулировки для 12, 24, 36 и 48В систем, возможность параллельного подключения

4. Последовательно-параллельное соединение

Последовательно-параллельная конфигурация подсоединения элементов, показанная на рисунке 6, предоставляет большую гибкость конструкции, с ее помощью можно создать систему с желаемыми значениями напряжения и тока, используя стандартные элементы. Суммарная мощность будет произведением значений напряжения и силы тока, например, четыре 1,2 В элемента емкостью 1000 мАч производят 4,8 Вт мощности. Четыре элемента типоразмера 18650 емкостью 3000 мАч каждый могут быть соединены последовательно-параллельно для достижения 7,2 В и 12 Вт. Использование тонких элементов позволит сконструировать гибкую аккумуляторную систему, но ей будет необходима система защиты.

Последовательно-параллельное соединение четырех элементов (2S2P)

Рисунок 6: Последовательно-параллельное соединение четырех элементов (2S2P). Такая конфигурация обеспечивает максимальную гибкость конструкции. Параллельные элементы помогают в управлении напряжением.

Литий-ионные элементы отлично подходят для последовательно-параллельных конфигураций, но необходим мониторинг каждого элемента — для соответствия значений напряжения и силы тока. Такой мониторинг реализуется аппаратно — путем создания электронного устройства, стандартный образец которого может контролировать систему из 13 литий-ионных элементов. Для больших аккумуляторных систем создаются специальные схемы, например, как в электромобиле Tesla, где аккумуляторная система состоит из 7000 элементов типоразмера 18650, суммарная мощность которых достигает 90 кВт/ч.

Dual Purpose Industrial Line Premium Line
тягово-стартерный аккумулятор промышленные аккумуляторы аккумуляторы с жидким электролитом
10 — 12 лет / 600 циклов 10 — 12 лет / 1200 циклов 10 — 12 лет / 1200 циклов
тягово-стартерный универсальная серия на базе уникальной технологии Smart Carbon

5. Рекомендации по использованию первичных батарей

  • Держите контакты элементов в чистоте. Конфигурация с четырьмя элементами имеет восемь контактов и каждый добавляет сопротивление.
  • Никогда не смешивайте разнотипные элементы, если вышел из строя один, и ему нет аналогичной замены, то необходимо заменить все. Общая производительность настолько хороша, насколько этому соответствует самый слабый элемент.
  • Соблюдайте полярность. Неправильно размещенный элемент уменьшает общее напряжение системы.
  • Для предотвращения утечки электролита и коррозии, извлекайте элементы из устройства, когда оно не используется. Особенно это касается угольно-цинковых элементов.
  • Не храните электрические батареи в металлических коробках. Элементы следует по отдельности помещать в полиэтиленовые пакеты, во избежание короткого замыкания. Не стоит носить батареи в карманах.
  • Держите батареи подальше от детей. Помимо риска попадания в дыхательные пути, что может вызвать удушение, ток электрохимической батареи при попадании в желудочно-кишечный тракт может вызвать язву, а при разрыве оболочки — отравление. (Смотрите: Влияние электрохимических батарей на здоровье человека).
  • Не заряжайте первичные (неперезаряжаемые) электрические батареи, так как накопление водорода может привести к взрыву. Экспериментировать с зарядкой можно лишь контролируя этот процесс.

6. Рекомендации по использованию вторичных батарей

  • Соблюдайте полярность при зарядке вторичных элементов. Несоблюдение может привести к короткому замыканию.
  • Извлекайте полностью заряженные элементы из зарядного устройства. Обычное зарядное устройство не имеет встроенной системы индикации заряда, следовательно, аккумулятор может перегреться.
  • Производите зарядку при комнатной температуре.

Последнее обновление 2016-02-29

Рейтинг и отзывы: Последовательная и параллельная конфигурация соединения аккумулятров 1 1 1 1 1 4 / 5 на основе 35 голосов

© 2002-2017 BEST ENERGY Ltd.
резервное и автономное электроснабжение.

Все права защищены. Копирование материалов
только при наличии активной ссылки в первом
абзаце статьи.

+380 44 383 3663

+380 50 680 4919

+380 68 680 4919

03134, г. Киев, ул. А. Королёва, 13

Call-центер с 8:00 до 20:00

Viber чат Telegram чат Whatsapp чат

  • Акции и предложения
  • Оплата и доставка
  • Гарантия и сервис
  • Помощь по сайту
  • Карта сайта
  • Cоглашение
  • Контакты

Виды соединения аккумуляторов.

Существуют последовательный, параллельный и последовательно-параллельный способы соединения аккумуляторных батарей.

Для увеличения напряжения аккумуляторы подключаются последовательно. При этой схеме подключения 2-х аккумуляторов соединяются плюсовая клемма одного аккумулятора и минусовая клемма другого аккумулятора.

Напряжение такой батареи равно сумме напряжений отдельных аккумуляторов, и напряжение умножается на количество аккумуляторов. При этом емкость батареи не изменяется и равна емкости одного аккумулятора.

Например, при последовательном соединении 12 штук 2-х вольтовых тяговых аккумуляторов 300Ач получаем 24В 300Ач.

Другой пример: в результате соединения 3-х штук 12 вольтовых батарей 100Ач выходит 36В 100Ач.

Для увеличения емкости аккумуляторные батареи подключаются параллельно. При данной схеме подключения 2-х аккумуляторов, соединяются между собой 2 плюсовые и отдельно 2 минусовые клеммы аккумуляторных батарей.

Поэтому емкость умножается на количество установленных аккумуляторов, а напряжение системы неизменяется.

Пример 2 шт. 12 вольтовых батарей емкостью 100Ач, соединенных параллельно в результате дают 12В 300Ач. Смотрите изображение.

Последовательное и параллельное соединение аккумуляторных батарей

Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.

Существует два варианта соединения аккумуляторных батарей в общий банк – параллельное и последовательное, в одном общем банке аккумуляторных батарей может присутствовать оба варианта соединения, для увеличения емкости и напряжения на аккумуляторных батареях.

Существует два варианта соединения аккумуляторных батарей в общий банк – параллельное и последовательное, в одном общем банке аккумуляторных батарей может присутствовать оба варианта соединения, для увеличения емкости и напряжения на аккумуляторных батареях.

Последовательное соединение аккумуляторных батарей

При последовательном соединении аккумуляторных батарей, емкость общей батареи остается такой же как и у каждого аккумулятора из цепи, а напряжение суммируется. То есть при последовательном соединении 4шт. АКБ 200 А*ч, 12 В – мы получим общую батарею емкостью 200 А*ч, и напряжением 48 В.

Последовательное соединение АКБ

Параллельное соединение аккумуляторных батарей

При параллельном соединении АКБ – напряжение общей батареи остается такой же как и у каждой батареи из цепи, а емкость суммируется. То есть при параллельном соединении 4 шт. АКБ 200 А*ч, 12 В – мы получаем общую батарею емкостью 800 А*ч, напряжением 12 В.

Параллельное соединение АКБ

Параллельно-последовательное соединение

Комбинированный вариант используется при построении систем, где нужно достичь более высокой емкости и напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *