С какой скоростью распространяются электромагнитные волны
Колебания и волны > Электромагнитные > Скорость электромагнитной волны (с).
Содержание | Величина | Наименование |
Скорость элекктромагнитной волны (с) — скорость распространения электромагнитных колебаний. В вакууме с = 3 . 10 8 м/с. В любой другой среде электромагнитные волны распространяются медленнее (в n раз), чем в вакууме. |
К вопросу о скорости распространения волн в электромагнитных средах Текст научной статьи по специальности «Физика»
В работе обсуждается вопрос скорости распространения волн в электромагнитных средах. Электромагнитная среда (поле) это пространство, заполняющее всю Вселенную, занятое электромагнитными частицами-фотонами. В основе специальной теории относительности утверждается постоянство скорости света в вакууме. По современным представлениям, скорость света в вакууме является предельной скоростью движения частиц и распространения взаимодействий. Однако, свет это узкий диапазон электромагнитных излучений (4÷8)∙1014 Гц, поэтому экспериментально измеренная скорость света относится именно к этому диапазону частот. То, что эта скорость электромагнитных волн теоретически может быть непостоянной физики размышляли давно, и периодически этот вопрос будоражится в научной литературе. У автора данной статьи также сложилось впечатление, что скорость света, под которой он понимает скорость распространения в электромагнитной среде волн широкого спектра частот, не является величиной постоянной. В статье делается попытка это обосновать. В фотонном электромагнитном поле окружающей среды одновременно движется в разных направлениях множество фотонов разной частоты. При этом они одновременно участвуют в формировании волны сжатия разряжения в этом поле под воздействием излучаемых антенной фотонов . Утверждается, что скорости движения фотонов разных частот могут изменяться в широком диапазоне от 1,285∙103 м/с (ν = 1024 Гц) до 1,285∙1012 м/с (ν = 106 Гц) и, следовательно, скорости распространения волн в электромагнитных средах, заполненных фотонами одинаковой частоты или узкого диапазона частот могут меняться в широких пределах от 8,58∙102 м/с до 8,58∙1011 м/с и существенно отличаться от экспериментально установленной скорости света. Межпланетное пространство в разных частях Вселенной может быть представлено разными спектрами фотонов и, следовательно, в них будут разные скорости распространения электромагнитных волн
i Надоели баннеры? Вы всегда можете отключить рекламу.
Похожие темы научных работ по физике , автор научной работы — Александров Борис Леонтьевич
Механизм формирования и распространения волн в электромагнитной среде
К вопросу излучения электромагнитных волн
Обоснование применения электромагнитного поля при производстве подсолнечного масла
Теория движителя электромагнитного типа с учетом тока элементарных частиц и поляризации вакуума
Модель фотона
i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.
TO THE QUESTION OF THE SPEED OF WAVE PROPAGATION IN ELECTROMAGNETIC ENVIRONMENT
This question is about the speed of wave propagation in electromagnetic environment. Electromagnetic environment (field) is the space that fills the whole Universe, occupied by the electromagnetic particles-photons. At the heart of the special relativity theory, the constancy of the speed of light in vacuum is affirmed. According to modern concepts, the speed of light in vacuum is the maximum speed of the particle motion and propagation of interactions. However, light is the narrow range of electromagnetic radiation (4÷8)∙1014 Hz, therefore experimentally measured speed of light is referred to this frequency range. The fact that this speed of electromagnetic waves can theoretically be non permanent physicists have pondered for a long time and this question is periodically excited in the scientific literature. The author of this article also had an impression that the speed of light, in which he understands distribution speed of waves of a wide range of frequencies in the electromagnetic environment, is not a constant. The article attempts to prove it. Many photons of different frequencies move simultaneously in different directions in a photonic electromagnetic field in environment. They are involved in the formation of a wave of compression decompression in this field under the influence of the antenna radiated photons. It is approved that the speed of photons of different frequencies can change within a wide range from 1,285∙103 m/s (ν = 1024 Hz) to 1,285∙1012 m/s (ν = 106 Hz) and, therefore, the speed of wave propagation in the electromagnetic environments that are filled by photons of the same frequency or a narrow frequency range can change widely from 8,58∙102 m/s to 8,58∙1011 m/s and be significantly different from the experimentally discovered speed of light. Interplanetary space in different parts of the Universe can be represented by different spectra of photons and therefore they will have different speed of propagation of electromagnetic waves
Текст научной работы на тему «К вопросу о скорости распространения волн в электромагнитных средах»
Научный журнал КубГАУ, №115(01), 2016 года
01.00.00 Физико-математические науки
К ВОПРОСУ О СКОРОСТИ РАСПРОСТРАНЕНИЯ ВОЛН В ЭЛЕКТРОМАГНИТНЫХ СРЕДАХ
Александров Борис Леонтьевич д. г.-м. н., профессор, 4884-1448, alex2e@yandex.ru Кубанский государственный аграрный университет, Краснодар, Россия
Ключевые слова: ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, ФОТОН, ИЗЛУЧЕНИЕ, ЭЛЕКТРОМАГНИТНАЯ ВОЛНА
Physics and mathematical sciences
TO THE QUESTION OF THE SPEED OF WAVE PROPAGATION IN ELECTROMAGNETIC ENVIRONMENT
Alexandrov Boris Leontievich Dr.Sci.Geol-Mineral., professor, 4884-1448, alex2e@yandex.ru
Kuban State Agrarian University, Krasnodar,
This question is about the speed of wave propagation in electromagnetic environment. Electromagnetic environment (field) is the space that fills the whole Universe, occupied by the electromagnetic particles-photons. At the heart of the special relativity theory, the constancy of the speed of light in vacuum is affirmed. According to modern concepts, the speed of light in vacuum is the maximum speed of the particle motion and propagation of interactions. However, light is the narrow range of electromagnetic radiation -(4^8)-1014 Hz, therefore experimentally measured speed of light is referred to this frequency range.
The fact that this speed of electromagnetic waves can theoretically be non permanent — physicists have pondered for a long time and this question is periodically excited in the scientific literature. The author of this article also had an impression that the speed of light, in which he understands distribution speed of waves of a wide range of frequencies in the electromagnetic environment, is not a constant. The article attempts to prove it. Many photons of different frequencies move simultaneously in different directions in a photonic electromagnetic field in environment. They are involved in the formation of a wave of compression -decompression in this field under the influence of the antenna radiated photons. It is approved that the speed of photons of different frequencies can change within a wide range from 1,285-103 m/s (v = 1024 Hz) to 1,285-1012 m/s (v = 106 Hz) and, therefore, the speed of wave propagation in the electromagnetic environments that are filled by photons of the same frequency or a narrow frequency range can change widely from 8,58-102 m/s to 8,58-10n m/s and be significantly different from the experimentally discovered speed of light. Interplanetary space in different parts of the Universe can be represented by different spectra of photons and therefore they will have different speed of propagation of electromagnetic waves
Keywords: ELECTROMAGNETIC FIELD, PHOTON, RADIATION, ELECTROMAGNETIC WAVE
В работе обсуждается вопрос скорости распространения волн в электромагнитных средах. Электромагнитная среда (поле) — это пространство, заполняющее всю Вселенную, занятое электромагнитными частицами-фотонами. В основе специальной теории относительности утверждается постоянство скорости света в вакууме. По современным представлениям, скорость света в вакууме является предельной скоростью движения частиц и распространения взаимодействий. Однако, свет — это узкий диапазон электромагнитных излучений — (4^8)-1014 Гц, поэтому экспериментально измеренная скорость света относится именно к этому диапазону частот. То, что эта скорость электромагнитных волн теоретически может быть непостоянной — физики размышляли давно, и периодически этот вопрос будоражится в научной литературе. У автора данной статьи также сложилось впечатление, что скорость света, под которой он понимает скорость распространения в электромагнитной среде волн широкого спектра частот, не является величиной постоянной. В статье делается попытка это обосновать. В фотонном электромагнитном поле окружающей среды одновременно движется в разных направлениях множество фотонов разной частоты. При этом они одновременно участвуют в формировании волны сжатия — разряжения в этом поле под воздействием излучаемых антенной фотонов. Утверждается, что скорости движения фотонов разных частот могут изменяться в широком диапазоне от 1,285-103 м/с (v = 1024 Гц) до 1,285-1012 м/с (v = 106 Гц) и, следовательно, скорости распространения волн в электромагнитных средах, заполненных фотонами одинаковой частоты или узкого диапазона частот могут меняться в широких пределах от 8,58-102 м/с до 8,58-1011 м/с и существенно отличаться от экспериментально установленной скорости света. Межпланетное пространство в разных частях Вселенной может быть представлено разными спектрами фотонов и, следовательно, в них будут разные скорости распространения электромагнитных волн
Научный журнал КубГАУ, №115(01), 2016 года
Характеристика объекта исследования
В основе специальной теории относительности (СТО) используется утверждение о постоянстве и независимости скорости света в вакууме от скорости источника или наблюдателя. По предложению А. Эйнштейна, а затем и А. Пуанкаре в 1905 году этот факт был отнесен к фундаментальным свойствам природы и входит в настоящее время в число наиболее фундаментальных законов природы. При этом под вакуумом понимается состояние среды, в которой отсутствуют молекулы вещества даже в газообразном состоянии. Однако надо иметь в виду, что создание такой гипотетической среды с полным вакуумом не только не гарантирует отсутствие в ней фотонного газа, но даже невозможно её создать технически, так как невозможно достичь состояния абсолютного нуля температуры, определяемой концентрацией и частотой находящихся в такой среде фотонов [1,2,3,13].
Первую оценку скорости света дал датский астроном О. Рёмер в 1676г.[14]. Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера «Ио» запаздывают по сравнению с расчётами на 22 минуты. Он получил значение скорости света около 220 000 км/сек. Лабораторным методом впервые скорость света удалось измерить французскому физику И. Физо в 1849 г.[15]. Им было получено значение 313.000 км/с. Позже были разработаны другие, более точные лабораторные методы измерения скорости света. По современным данным, скорость света в вакууме равна 299.792.458 м/с с точностью ± 1,2 м/с.
Свет — это узкий диапазон электромагнитных излучений — (4^8)-1014 Гц, поэтому экспериментально измеренная скорость света относится именно к этому диапазону частот. Однако принято считать, что скорость света — абсолютная величина скорости распространения всех
Научный журнал КубГАУ, №115(01), 2016 года
электромагнитных волн в вакууме, то-есть, собственно видимого света,
электромагнитного__излучения в виде радиоволн, частота которых
существенно меньше —(3• 10 -^3-10 ) Гц, рентгеновских и гамма-лучей, частота которых существенно больше — (1016^1024) Гц, чем для видимого света. По современным представлениям, скорость света в вакууме -предельная скорость движения частиц и распространения взаимодействий. Однако то, что эта скорость теоретически может быть непостоянной -физики размышляли давно и периодически этот вопрос будоражится в научной литературе. У автора данной статьи также сложилось впечатление, что скорость света, под которой он понимает скорость распространения в электромагнитной среде волн широкого спектра частот, не является величиной постоянной. Ниже делается попытка это обосновать.
Автором в статьях: «К вопросу излучения электромагнитных волн» и «Механизм формирования и распространения волн в электромагнитной среде»[4,5] обсуждается вопрос сущности излучения электромагнитной волны различными источниками. Ставиться под сомнение достоверность её представления Дж. Максвеллом [16,17] в виде двух, противоречащих друг другу моделей, одна в виде чередующихся электрического и магнитного полей и другая — в виде ортогонально расположенных без сдвига по фазе векторов напряженностей электрического и магнитного полей, описываемых во многих учебниках по физике [18-33]. Обосновывается формирование электромагнитной волны в виде волны сжатия-разряжения в окружающем электромагнитном фотонном поле потоком фотонов разных частот, излучаемых различными источниками или антенной. В фотонном электромагнитном поле окружающей среды одновременно движется в разных направлениях множество фотонов разной частоты и все они участвуют в формировании волны сжатия-
Научный журнал КубГАУ, №115(01), 2016 года
разряжения в электромагнитном поле под воздействием излучаемых источником фотонов.
В связи с этим, просматривается большая аналогия между распространением волн в электромагнитном подвижном фотонном эфире (фотонном газе) и упругих звуковых волн в газовой среде, где молекулы, составляющие газовую среду, сами движутся не только в разных направлениях, но и с разными скоростями. Поэтому, важно рассмотреть общие особенности распространения как упругих звуковых волн в газовой среде, так и упругих волн в электромагнитной фотонной среде, так как эти обе среды представлены подвижными частицами.
Анализ скоростей распространения упругих волн в средах индивидуальных газов показывает, что скорости звуковых волн изменяются в широких пределах от 179 м/с для газа из тяжелых паров эфира до 1284 м/с для газа, состоящего из легких молекул водорода (таблица №1) [34], причем, как видно из рис.1, отмечается четкая зависимость — с понижением мольной массы газа экспоненциально возрастает скорость звуковой волны.
В этой таблице также представлены значения скоростей хаотического движения молекул отдельных газов, рассчитанные по
формуле гмол= , исходя из молекулярно — кинетической теории [28 ] (здесь R=8,31 Дж/моль-К — универсальная газовая постоянная, Т-абсолютная температура в градусах Кельвина, ц — мольная масса соответствующего газа, кг/моль).
Скорость распространения упругих волн в разных средах
Научный журнал КубГАУ, №115(01), 2016 года
Таблица 1 — Соотношение скоростей движения молекул газа и скоростей звуковой волны в этих газах при Т=273оК_____________________
Газ Мольная масса, кг/моль 3 RT _ ^мол-1 ^ м^с Oволн, м/с
Водород (Н2) 2-10″3 1845 1284 1,437
Г елий (2Не4) 4-10″3 1304 965 1,351
Метан (СН4) 16-10-3 652 430 1,516
Аммиак (NH3) 17-10-3 632,7 415 1,524
Азот (N2) 28-10-3 493 334 1,476
Воздух 29-10-3 484,4 331 1,463
Кислород (О2) 32-10-3 461 316 1,459
Оксид углерода (СО2) 44-10-3 393,3 260 1,512
Пары спирта (С2Н5ОН) 46-10-3 384,65 230 1,672
Пары воды (Н2О) 18^10-3 614,9 401 1,533
Пары эфира (СН3ОС2Н5) 60-10-3 336,8 179 1,881
Хлор (С12) 70-10-3 311,8 206 1,54
Рис. 1. Зависимость скорости распространения звуковой волны (оволн) в разных газах от их мольной массы (д,г/моль)
Как видно из таблицы 1, скорость движения молекул в индивидуальных газах (омол) в среднем в 1,496 раза превышает скорость распространения звуковой волны в этих газах (иволн), причем связь между
Научный журнал КубГАУ, №115(01), 2016 года
гвОлн и имол представляет прямолинейную зависимость (рис.2) вида оволн = (Гмол — 50) / 1,409.
Рис.2. Зависимость скорости распространения упругой волны в газах (оволн) от скорости движения молекул этих газов (омол)
Следует иметь в виду, что при формировании упругой волны передача энергии от одной частицы в твердом состоянии вещества или от одной молекулы в жидкой или газообразной среде происходит в виде передачи её импульса (количества движения) частицы (молекулы) р=шт. Следовательно скорость передачи импульса о=р/ш, т.е. чем больше масса частицы или молекулы, тем с меньшей скоростью она будет передавать этот импульс.
Научный журнал КубГАУ, №115(01), 2016 года
В таблице №2 по данным [34] представлены скорости звука и средневзвешенные скорости движения молекул воздуха в зависимости от температуры воздуха.
Таблица 2 — Скорость звука в воздухе и средневзвешенная скорость
движения молекул _ воздуха при разных температурах [34]
Температура, ОС Скорость звука, Оводн м/с Скорость движения молекул, гмол, м/с
— 150 216,7 325,17 1,500
—100 263,7 385,6 1,462
—50 299,3 437,8 1,463
—20 318,8 466,3 1,463
—10 325,1 475,5 1,463
0 331,5 484,4 1,461
10 337,3 493,2 1,462
20 343,1 501,8 1,463
30 348,9 510,6 1,463
50 360,3 526,9 1,463
100 387,1 566,2 1,463
200 436,0 637,4 1,463
300 479,8 701,8 1,463
400 520,0 760,6 1,463
500 557,3 815,1 1,463
1000 715,2 1046,1 1,463
Как видно, чем выше температура, тем выше и средневзвешенные скорости движения молекул воздуха и скорости звука в воздухе, причем среднее значение соотношения между скоростями движения молекул и скоростью звука практически остается постоянным во всем диапазоне температур от -150оС до +1000оС и равным 1,465. Это значение достаточно близко к величине 1,496, характерной для молекул разных газов (таблица №1).
Научный журнал КубГАУ, №115(01), 2016 года
Зависимость скорости звуковой волны в индивидуальных газах от мольной массы газа в двойном логарифмическом масштабе
трансформируется в прямолинейную связь (рис.3).
Рис.3. Зависимости скорости распространения упругой волны (оволн) в твердых телах (▲ ,1), жидкостях (%2 ), газах (*,3), и в фотонной среде (^,4) в зависимости от их мольной массы (р .г/моль)
Нанесение на этот график данных по жидкостям (таблица №3) и твердым телам (таблица №4) показывает, что для твердых тел отмечается менее четкая связь, но сохраняется аналогичная тенденция увеличения скорости звуковой волны с понижением мольной массы, при этом скорости распространения звуковой волны в твердых телах в 20-40 раз превышают скорости в газах. Это согласуется с данными распространения звуковых волн в разных горных породах [8-12 ].
Научный журнал КубГАУ, №115(01), 2016 года
i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
Таблица 3 — Скорость звука в жидкостях при атмосферном давлении [34]
Наименование Мольная масса, г/моль Скорость звука Оволн м/с
Азот жидкий (-199оС) 28,0 962
Бензин (17оС) 142 1170
Вода морская 23 1533
Вода пресная (0оС) 18 1403
Вода пресная (20 оС) 18 1483
Вода пресная (74 оС) 18 1555
Вода пресная (100 оС) 18 1543
Вода тяжелая (20 оС) 20 1400
Водород жидкий (-256оС) 2 1187
Таблица 4 — Скорость звука в твердых веществах при 25оС [34]
Наименование Мольная масса, кг/моль Скорость звука Оволн м/с
Алмаз 12-10″3 12000-18350
Железо, сталь 56-10″3 5130
Алюминий 27-10″3 5100-6250
Каменная соль(ШСГ) 58-10″3 4400
Лёд (-4оС) 18-10″3 3960
Медь 63,5-10″3 3560
Золото 197-10-3 3240
Свинец 207-10-3 1322
Магний 24,3-10-3 4600-4970
Платина 195,1 • 10-3 2690-2800
Цинк 65,4-10-3 3700-3850
Серебро 108-10″3 2610-2800
Никель 58,7-10-3 4785-4970
CdS 144,8-10-3 4500
LiNbOs 148-10-3 7330
AhOs 102-10-3 11240
SiO2 60-10-3 5600-6330
MgA^O4 142-10-3 8830
В жидкостях характер связи гволн = f (ц) существенно меняется. Отмечается пологая связь между этими параметрами, причем с уменьшением мольной массы скорость упругой (звуковой) волны понижается (рис.3). Так как в данном случае нас интересуют общие
Научный журнал КубГАУ, №115(01), 2016 года
особенности распространения упругих волн в подвижных газовой и электромагнитной средах, то причины существенного изменения характера связи гволн = f (р) в жидкостях в данной статье не обсуждаются.
Скорости распространения фотонов и электромагнитных волн
Для рассмотрения особенностей распространения волн в подвижной электромагнитной фотонной среде провели расчет масс отдельных фотонов разной частоты, используя общепринятую формулу Эйнштейна Е = mf • c и Планка Е = h, • v [28], из сравнения которых следует, что mf = h,-v / c (здесь с — принятая постоянной скорость света в вакууме). В таблице №5 приведены рассчитанные значения масс фотонов (mf) разной частоты (v ) и величины скоростей движения фотонов с учетом их массы по формуле of
=s f в соответствии с молекулярно-кинетическои теорией вещества.
Учитывая, что соотношение между скоростью движения частиц и скоростью распространения волн для газов равно 1,496, по величинам скоростей движения фотонов uf рассчитали скорости распространения волн в средах, заполненных такими индивидуальными фотонами (). По величинам масс отдельных фотонов (mf) рассчитали мольные массы фотонов как ^f= mf • N, где N — число Авогадро (N = 6,02-1023 моль-1), и нанесли результаты расчетов и ^f на график =f (^f), представленном в двойном логарифмическом масштабе (рис. № 4).
Таблица 5 -Значения рассчитанных скоростей фотонов разной частоты и скоростей электромагнитных волн в этих фотонах_________________
Частота, v, Гц mf = hv/c2, кг Of=J mf , м/с Мольная масса фотонного газа, кг / моль
106 7,35-10″45 1,241012 4,43 •Ю’21 8,291011
107 7,35Э0″44 3,92^ 1011 4,43 •Ю’20 2,62^ 1011
108 7,35-10″43 1,241011 4,43 • 10’19 8,29^ 1010
109 7,35-10-42 3,92^ 1010 4,43 • 10’18 2,62Э010
Научный журнал КубГАУ, №115(01), 2016 года
1010 7,35^ 10-41 1,241010 4,43 • 10-17 8,29^ 109
1011 7,3530-40 3,92^ 109 4,43 • 10-16 2,62309
1012 7,35^ 10-39 1,24109 4,43 • 10-15 8,29^ 108
81012 5,8910-38 4,38108 3,548^ 10-14 2,928308
7,65^ 1012 5,63230-38 4,4797308 3,393^ 10-14 2,9945308
7,6^1012 5,595^ 10-38 4,4945308 3,37^ 10-14 3,0043^ 108
1013 7,35^ 10-38 3,92^ 108 4,43 • 10-14 2,62^ 108
1014 0,735^ 10-36 1,24108 4,43 • 10-13 8,29107
4,0^1014 2,9342-10-36 6,4296307 1,76730-12 4,30107
6,03014 4,41 •Ю-36 5,245 107 2,6610-12 3,50^ 107
8,0^1014 5,868 10-36 4,5466307 3,53^ 10-12 3,039307
1015 0,735^ 10-35 3,92107 4,43 • 10-12 2,62107
1016 0,735^ 10-34 1,24107 4,43 • 10-11 8,29^ 106
1017 0,73530-33 3,92^ 106 4,4310-10 2,62^ 106
1018 0,735^ 10-32 1,24106 4,43 •Ю-9 8,29105
1019 0,735-10-31 3,92105 4,43 10-8 2,62105
О to о 0,735^ 10-30 1,24105 4,43 •Ю-7 8,29^ 104
1021 0,73530-29 3,92304 4,43 10-6 2,62^ 104
1022 0,73530-28 1,24104 4,43 10-5 8,29103
1023 0,73530-27 3,92103 4,43 •Ю-4 2,62103
1024 0,73530-26 1,24103 4,43 10-3 8,29102
Рис.4.Зависимость скорости распространения волн в электромагнитных средах, заполненных индивидуальными фотонами (), от мольной массы
фотонного газа (Дф от.газ)
Научный журнал КубГАУ, №115(01), 2016 года
Совмещение полученной зависимости для фотонов (рис.4) с аналогичной зависимостью для индивидуальных газов гволн = f (Дгаз) (рис.
3) показывает, что график зависимости = f (Дфот.газ) является продолжением зависимости оволн = f (Дгаз) в область более низких значений мольных масс, т.е. обе зависимости описываются единой
закономерностью. Это дает основание утверждать, что формирование упругих волн в газовой среде с хаотически движущимися в разных направлениях и с разными скоростями молекул газов и формирование волн в фотонной электромагнитной среде с хаотически движущимися в разных направлениях и с разными скоростями фотонов подчиняется одному и тому же закону.
Анализ таблицы 4 показывает, что скорости распространения волн в электромагнитных средах, заполненных индивидуальными фотонами, по аналогии с индивидуальными газами, могут меняться в широких пределах от 8,58Э02 м/с для массивных фотонов (0,735-10-26 кг) высокой частоты ( v =1024 Гц) до 8,58Э0П м/с для фотонов малой массы (7,35Э0-45 кг) и низкой частоты (v =106 Гц). Скоростями распространения волн в электромагнитных средах, заполненных индивидуальными фотонами, близкими к экспериментально полученным значениям скорости света в вакууме, обладают электромагнитные среды, заполненные индивидуальными фотонами с частотами 7,65Э012 — 7,6-1012 Гц. Так как окружающее нашу планету пространство заполнено фотонами широкого диапазона частот, то, вероятно, средневзвешенное значение скорости распространения волны в таком электромагнитном поле и составляет значение, полученное экспериментальным путем 299.792.458 м/с, т.е. приближенно 3 10 м/с.
Например, на рис. 5 приводится спектр фонового только гамма-излучения фотонов в диапазоне энергий 370^3100 кэВ, зарегистрированный автором в помещении лаборатории радиометром-
Научный журнал КубГАУ, №115(01), 2016 года
спектрометром универсальным РСУ-01 «Сигнал-М», в составе которого имеется блок детектирования гамма-излучения СБДГ-02 [1]. Энергии 370 кэВ соответствует частота 8,93-1019 Гц, а энергии 3100 кэВ — частота 7,48-10 Гц. Общий спектр фотонов в этих условиях, безусловно, включает более широкий диапазон частот, в том числе и видимую часть спектра.
Рис. 5. Спектр фонового у-излучения в помещении лаборатории. Время измерения 1800сек, скорость счета гамма-квантов 26,82 имп/с.
Видимо, в разное время года и в разное время суток спектр фотонов, находящихся около разных частей поверхности Земного шара может несколько отличаться. Это будет сказываться на средневзвешенном значении скорости распространения электромагнитных волн, а, следовательно, и скорости световой волны и могло повлиять на результаты экспериментов по оценке скорости распространения света разными исследователями. Межпланетное пространство в разных частях Солнечной системы и тем более в разных частях Вселенной может быть представлено отличающимися спектрами частот фотонов. Это должно отражаться на изменении средневзвешенной скорости движения фотонов этого спектра частот и, следовательно, на скорости распространения волн в такой
Научный журнал КубГАУ, №115(01), 2016 года
электромагнитной фотонной среде. В отдаленных частях Вселенной концентрация фотонов очень низкая и поэтому температура достигает минимальных значений до 3оК. Такое значение температуры, видимо, обусловлено преимущественно фотонами низких частот, движущихся соответственно с более высокими собственными скоростями. Средневзвешенное значение скорости волны в таком фотонном электромагнитном поле будет иным, чем экспериментально полученное значение скорости света в пределах поверхности Земного шара.
1. Электромагнитное поле — это пространство, занятое электромагнитными частицами-фотонами. В фотонном электромагнитном поле окружающей среды одновременно движется в разных направлениях множество фотонов разной частоты, и они одновременно участвуют в формировании волны сжатия — разряжения в этом поле под воздействием излучаемых антенной фотонов или другими источниками (лампами накаливания и т. д.).
2. Скорости движения фотонов разных частот могут изменяться в широком диапазоне от 1,285Э03 м/с (v = 1024 Гц) до 1,285Э012 м/с (v = 106 Гц).
3. Скорости распространения волн в электромагнитных средах, заполненных фотонами одинаковой частоты или узкого диапазона частот могут меняться в широких пределах от 8,58-10 м/с до 8,58-10 м/с и существенно отличаться от экспериментально установленной скорости света.
4. Межпланетное пространство в разных частях Вселенной может быть представлено разными спектрами фотонов и, следовательно, в них будут разные скорости распространения волн. В процессе движения волны в электромагнитных средах через разные части Вселенной её скорость соответственно будет изменяться.
Научный журнал КубГАУ, №115(01), 2016 года
i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
5. Большая разница в скорости света по данным И. Физо, полученной в пределах поверхности Земли с использованием лабораторного метода (313000 км/с), и по данным О. Рёмера, полученной при исследовании затмения спутника Юпитера «Ио» (220000 км/с), вероятно объясняется тем, что спектры фотонов в пространстве между Землей и Юпитером и у поверхности Земли существенно отличаются.
1. Александров Б. Л., Родченко М. Б., Александров А. Б. Роль фотонов в физических и химических явлениях. г. Краснодар, «Печатный двор Кубани», 2002 г,543 с.
2. Александров Б. Л. К вопросу природы света и модели фотона. Труды Кубанского государственного аграрного университета, вып.№1(22), 2010, с.152-157.
3. Александров Б. Л., Александров А. Б., Родченко М. Б. Температура вещества. Труды КГАУ, вып. 381(409) «Применение электротехнических устройств в АПК», г.Краснодар 2000 г.
4. Александров Б. Л. . К вопросу излучения электромагнитных волн.
/Б.Л.Александров // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. — Краснодар: КубГАУ, 2014.-№04(098). С.988-1008.- IDA[article ID]: 0981404074. — Режим доступа:
http ://ej. kubagro.ru/2014/04/pdf/74.pdf,1,312у. п. л., импакт-фактор РИНЦ=0,346.
5. Александров Б. Л. Механизм формирования и распространения волн в
электромагнитной среде. /Б. Л.Александров // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. -Краснодар: КубГАУ, 2014.-№06(100). С.919-936. — IDA[article ID]: 1001406061. — Режим доступа:
6. Александров Б. Л. Модель фотона. /Б. Л.Александров // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. — Краснодар: КубГАУ, 2015. -№07(111). IDA[article ID]: 1111507037. — Режим доступа:
7. Александров Б. Л. .Тепло, теплота и внутренняя энергия тела. /Б. Л. Александров // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. — Краснодар: КубГАУ, 2015.-№07(111). — IDA[article ID]: 1111507038. — Режим доступа: http://ei.kubagro.ru/2015/07/pdf/38.pdf,0,938v.п.л.,импакт-фактор РИНЦ=0,346.
8. Александров Б. Л., Афанасьев В. С. Влияние температуры на удельное сопротивлений и скорость распространения акустических волн в глине. Нефтегазовая геология и геофизика», Экспресс информация,№18, 1976 г,
9. Александров Б. Л. Влияние глубины залегания и порового давления на скорость сейсмических волн в глинах. «Нефтегазовая геология и геофизика», ,№7, 1977 г
10. Александров Б. Л., Афанасьев В. С., Итенберг С. С. Исследование влияния некоторых факторов на скорость распространения продольных акустических волн в осадочных породах. Журнал «Нефть и газ», №1, 1977г, Изд. Высш. Школы.
Научный журнал КубГАУ, №115(01), 2016 года
11. Александров Б. Л., Рафиков В. Г., Половко М. П. Использование акустического метода для изучения околоскважинного пространства. Журнал «Нефтегазовая геология и геофизика» №1,1982 г.
12. Александров Б. Л., Афанасьев В. С., Есипко О. А. Закономерности изменения интервального времени распространения продольных акустических волн в глинах с глубиной. Сб. Разведочная геофизика, выпуск 102, М., Недра, 1986 г
13. Александров Б. Л., Александров А. Б., Родченко М. Б. Фотоны — источник различных форм энергии в природе. Энерго- и ресурсосберегающие технологии и установки. Материалы научной конференции факультетов механизации, энергетики и электрификации КГАУ, г.Краснодар, 2005 г.
14. Ремер О. О скорости света. С. 117-120. Пер. с нем. в сб. под ред. Г. М. Голина и
С. Р. Филоновича «Классики Физической науки», Москва, «Высшая школа», 1989, 575 с.
15. Физо И. О скорости света в различных средах.С.416-427. О распространении света в движущихся телах.С.428-439. Пер. с нем. в сб. под ред. Г. М. Голина и С. Р. Филоновича «Классики Физической науки», Москва, «Высшая школа», 1989, 575 с.
16. Максвелл Дж. К. Трактат об электричестве и магнетизме, т. 1, 2, Оксфорд, 1873. Пер. с англ. Наука, М., 1989.
17. Максвелл Дж. К. Динамическая теория электромагнитного поля. С.479-485. Пер. с нем. в сб. под ред. Г. М. Голина и С. Р. Филоновича «Классики Физической науки», Москва, «Высшая школа», 1989, 575 с.
18. Бутиков Е. И., Кондратьев А. С. Физика в двух томах. Том 2, Электродинамика, Оптика, Москва, Физматиздат, 2004,336 с.
19. Грабовский Р. И. Курс физики. Издание восьмое, стереотипное. Санкт-Петербург-Москва-Краснодар, 2005, 607 с.
20. Дерлаф А. А., Яворский Б. М. Курс физики, 4-е издание, исправленное. Москва, «Академа», 2003, 720 с.
21. Кингсеп А. С., Локшин Г. Р., Ольхов О. А. Основы физики. Курс общей физики. Том 1. Москва, Физматлит, 2001, 558 с.
22. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика в десяти томах. Том IV-Квантовая электродинамика. (В. Б.Берестецкий, Е. М.Лифшиц, Л.П. Питаевский), Издание четвертое, исправленное. Под редакцией Л.П. Питаевского., Москва, «Физматлит», 2002, 719 с.
23. Орир Дж. Физика в двух томах, том 2, перевод с английского под редакцией Е.М. Лейкина. Москва, «Мир»,1981, 622 с.
24. Ремизов А. Н., Потапенко А. Я. Курс физики, 2-е издание, стереотипное. Москва, «Дрофа», 2004, 720 с.
25. Савельев И. В. Курс физики в трех томах. Том 2 «Электричество, колебания и волны, волновая оптика». Москва, «Наука», Главная редакция физико-математической литературы, 1989, 462 с.
26. Сивухин Д. В. Общий курс физики в пяти томах, том III «Электричество», Издание четвертое, стереотипное, Москва, Физматлит МФТИ, 2004, 654 с.
27. Тамм И. Е. Основы теории электричества. Издание одиннадцатое, исправленное и дополненное. Москва, Физматлит, 2003, 615 с.
28. Трофимова Т. И. Курс физики. Издание шестое, стереотипное. Москва, «Высшая школа», 2000, 542 с.
29. Физика, Часть II — Оптика и волны. Перевод с английского под редакцией
А.С. Ахматова. Москва, Издательство «Наука», Главная редакция физико-
математической литературы, 1973, 399 с.
Научный журнал КубГАУ, №115(01), 2016 года
30. Физика, Часть IV — Электричество и строение атома. Перевод с английского под редакцией А.С.Ахматова. Москва, Издательство «Наука», Главная редакция физико-математической литературы, 1974, 527 с.
31. Фэйнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике в девяти томах, том 3, Излучение, волны, кванты. Издательство «Мир», Москва, 1977, 495 с.
32. Эллиот Л., Уилкокс У. Физика. Перевод с английского под редакцией проф. А. И. Китайгородского, Издание третье, исправленное. Москва, Издательство «Наука», Главная редакция физико-математической литературы, 1975, 734 с.
33. Яворский Б. М. , Детлаф А. А. Курс физики, том III, Волновые процессы, оптика, атомная и ядерная физика. Москва, «Высшая школа», 1967, 553 с.
34. Энциклопедия Физики и техники. www.Femto.com.ua.
1. Aleksandrov B. L., Rodchenko M. B., Aleksandrov A. B. Rol’ fotonov v fizicheskih i himicheskih javlenijah. g. Krasnodar, «Pechatnyj dvor Kubani», 2002 g,543 s.
2. Aleksandrov B. L. K voprosu prirody sveta i modeli fotona. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, vyp.№1(22), 2010, s. 152-157.
3. Aleksandrov B. L., Aleksandrov A. B., Rodchenko M. B. Temperatura veshhestva. Trudy KGAU, vyp. 381(409) «Primenenie jelektrotehnicheskih ustrojstv v APK», g.Krasnodar 2000 g.
4. Aleksandrov B. L. . K voprosu izluchenija jelektromagnitnyh voln. /B.L.Aleksandrov // Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyj zhurnal KubGAU) [Jelektronnyj resurs]. — Krasnodar: KubGAU, 2014.-№04(098). S.988-1008.- IDA[article ID]: 0981404074. — Rezhim dostupa: http://ej.kubagro.ru/2014/04/pdf/74.pdf,1,312u.p.l.,impakt-faktor RINC=0,346.
5. Aleksandrov B. L. Mehanizm formirovanija i rasprostranenija voln v jelektromagnitnoj srede. /B. L.Aleksandrov // Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyj zhurnal KubGAU) [Jelektronnyj resurs]. -Krasnodar: KubGAU, 2014.-№06(100). S.919-936. — IDA[article ID]: 1001406061. — Rezhim dostupa: http://ej.kubagro.ru/2014/06/pdf/61.pdf,1,125u.p.l.,impakt-faktor RINC=0,346.
6. Aleksandrov B. L. Model’ fotona. /B. L.Aleksandrov // Politematicheskij setevoj
jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyj zhurnal KubGAU) [Jelektronnyj resurs]. — Krasnodar: KubGAU, 2015. -№07(111). IDA[article ID]: 1111507037. — Rezhim dostupa:
7. Aleksandrov B. L. .Teplo, teplota i vnutrennjaja jenergija tela. /B. L.Aleksandrov //
Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyj zhurnal KubGAU) [Jelektronnyj resurs]. — Krasnodar: KubGAU, 2015.-№07(111). — IDA[article ID]: 1111507038. — Rezhim dostupa:
8. Aleksandrov B. L., Afanas’ev V. S. Vlijanie temperatury na udel’noe soprotivlenij i skorost’ rasprostranenija akusticheskih voln v gline. Neftegazovaja geologija i geofizika», Jekspress informacija,№18, 1976 g,
9. Aleksandrov B. L.Vlijanie glubiny zaleganija i porovogo davlenija na skorost’ sejsmicheskih voln v glinah. «Neftegazovaja geologija i geofizika», ,№7, 1977 g
10. Aleksandrov B. L., Afanas’ev V. S., Itenberg S. S. Issledovanie vlijanija nekotoryh faktorov na skorost’ rasprostranenija prodol’nyh akusticheskih voln v osadochnyh porodah. Zhurnal «Neft’ i gaz», №1, 1977g, Izd. Vyssh. Shkoly.
Научный журнал КубГАУ, №115(01), 2016 года
11. Aleksandrov B. L., Rafikov V. G., Polovko M. P. Ispol’zovanie akusticheskogo metoda dlja izuchenija okoloskvazhinnogo prostranstva. Zhurnal «Neftegazovaja geologija i geofizika» №1,1982 g.
12. Aleksandrov B. L., Afanas’ev V. S., Esipko O. A. Zakonomernosti izmenenija interval’nogo vremeni rasprostranenija prodol’nyh akusticheskih voln v glinah s glubinoj. Sb. Razvedochnaja geofizika, vypusk 102, M., Nedra, 1986 g
13. Aleksandrov B. L., Aleksandrov A. B., Rodchenko M. B. Fotony — istochnik razlichnyh form jenergii v prirode. Jenergo- i resursosberegajushhie tehnologii i ustanovki. Materialy nauchnoj konferencii fakul’tetov mehanizacii, jenergetiki i jelektrifikacii KGAU, g.Krasnodar, 2005 g.
14. Remer O. O skorosti sveta. S. 117-120. Per. s nem. v sb. pod red. G. M. Golina i S. R. Filonovicha «Klassiki Fizicheskoj nauki», Moskva, «Vysshaja shkola», 1989, 575 s.
15. Fizo I. O skorosti sveta v razlichnyh sredah.S.416-427. O rasprostranenii sveta v dvizhushhihsja telah.S.428-439. Per. s nem. v sb. pod red. G. M. Golina i S. R. Filonovicha «Klassiki Fizicheskoj nauki», Moskva, «Vysshaja shkola», 1989, 575 s.
16. Maksvell Dzh. K. Traktat ob jelektrichestve i magnetizme, t. 1, 2, Oksford, 1873. Per. s angl. Nauka, M., 1989.
17. Maksvell Dzh. K. Dinamicheskaja teorija jelektromagnitnogo polja. S.479-485. Per. s nem. v sb. pod red. G. M. Golina i S. R. Filonovicha «Klassiki Fizicheskoj nauki», Moskva, «Vysshaja shkola», 1989, 575 s.
18. Butikov E. I., Kondrat’ev A. S. Fizika v dvuh tomah. Tom 2, Jelektrodinamika, Optika, Moskva, Fizmatizdat, 2004,336 s.
19. Grabovskij R. I. Kurs fiziki. Izdanie vos’moe, stereotipnoe. Sankt-Peterburg-Moskva-Krasnodar, 2005, 607 s.
20. Derlaf A. A., Javorskij B. M. Kurs fiziki, 4-e izdanie, ispravlennoe. Moskva, «Akadema», 2003, 720 s.
21. Kingsep A. S., Lokshin G. R., Ol’hov O. A. Osnovy fiziki. Kurs obshhej fiziki. Tom 1. Moskva, Fizmatlit, 2001, 558 s.
22. Landau L. D., Lifshic E. M. Teoreticheskaja fizika v desjati tomah. Tom IV-Kvantovaja jelektrodinamika. (V. B.Beresteckij, E. M.Lifshic, L.P. Pitaevskij), Izdanie chetvertoe, ispravlennoe. Pod redakciej L.P. Pitaevskogo., Moskva, «Fizmatlit», 2002, 719 s.
23. Orir Dzh. Fizika v dvuh tomah, tom 2, perevod s anglijskogo pod redakciej E.M.Lejkina. Moskva, «Mir»,1981, 622 s.
24. Remizov A. N., Potapenko A. Ja. Kurs fiziki, 2-e izdanie, stereotipnoe. Moskva, «Drofa», 2004, 720 s.
25. Savel’ev I. V. Kurs fiziki v treh tomah. Tom 2 «Jelektrichestvo, kolebanija i volny, volnovaja optika». Moskva, «Nauka», Glavnaja redakcija fiziko-matematicheskoj literatury, 1989, 462 s.
26. Sivuhin D. V. Obshhij kurs fiziki v pjati tomah, tom III «Jelektrichestvo», Izdanie chetvertoe, stereotipnoe, Moskva, Fizmatlit MFTI, 2004, 654 s.
27. Tamm I. E. Osnovy teorii jelektrichestva. Izdanie odinnadcatoe, ispravlennoe i dopolnennoe. Moskva, Fizmatlit, 2003, 615 s.
28. Trofimova T. I. Kurs fiziki. Izdanie shestoe, stereotipnoe. Moskva, «Vysshaja shkola», 2000, 542 s.
29. Fizika, Chast’ II — Optika i volny. Perevod s anglijskogo pod redakciej A.S.Ahmatova. Moskva, Izdatel’stvo «Nauka», Glavnaja redakcija fiziko-matematicheskoj literatury, 1973, 399 s.
30. Fizika, Chast’ IV — Jelektrichestvo i stroenie atoma. Perevod s anglijskogo pod redakciej A.S.Ahmatova. Moskva, Izdatel’stvo «Nauka», Glavnaja redakcija fiziko-matematicheskoj literatury, 1974, 527 s.
Научный журнал КубГАУ, №115(01), 2016 года
31. Fjejnman R., Lejton R., Sjends M. Fejnmanovskie lekcii po fizike v devjati tomah, tom 3, Izluchenie, volny, kvanty. Izdatel’stvo «Mir», Moskva, 1977, 495 s.
32. Jelliot L., Uilkoks U. Fizika. Perevod s anglijskogo pod redakciej prof. A. I. Kitajgorodskogo, Izdanie tret’e, ispravlennoe. Moskva, Izdatel’stvo «Nauka», Glavnaja redakcija fiziko-matematicheskoj literatury, 1975, 734 s.
33. Javorskij B. M. , Detlaf A. A. Kurs fiziki, tom III, Volnovye processy, optika, atomnaja i jadernaja fizika. Moskva, «Vysshaja shkola», 1967, 553 s.
какова скорость распространения электромагнитных волн в воздухе.
На самом деле, абсолютно точная скорость света в вакууме: 299 792 458 м/с.
Это означает, что ничто и нигде в обычном мире не должно двигаться с большей скоростью. В средах, которые оказывают сопротивления электромагнитным волнам (таких, как воздух, вода и всё остальное вообще, кроме вакуума) — в них скорость электромагнитных волн будет меньше, чем скорость света в вакууме. Есть коэффициент преломления при переходе из вакуума в воздух, он зависит от длины волны. Он может менять уже четвёртую цифру в значении скорости света в вакууме. В воздухе это отличие не столь значительно при выполнении расчётов (конечно, чего уж там, если округляем до 300 000 км/c), чего нельзя сказать о воде.
Ответ: меньше, чем 299 792 458 м/с.
Остальные ответы
300 000 км в секунду.
Кажется, как и скорость света — 300 000 км. в секунду
здесь уже ответили
с = 300.000 км/с
Дебилы! Человек задал простой вопрос и не получил на него ответ. Скорость электромагнитной волны в воздухе определяется как скорость света в вакууме деленная на корень квадратный из произведения диэлектрической проницаемости воздуха и электромагнитной проницаемости воздуха, а именно 299792458/корень квадратный (1,00057*1,000038)=299701359 м/с. Также, следует отметить, что значения проводимостей и проницаемости указаны для частот менее 1 мегагерца. Также, следует отметить, что при разных температурах и влажности воздуха, скорость будет меняться.
Все ответы не верные, — 🙂
для решения вопросы нужно знать 3 вещи:
1. источник возбуждения электромагнитных волн нужного тебе типа.
2. частота волн.
3. длина волн.
4. — ПС. изначально дано, что в воздухе.
Скорость распространения электромагнитных волн
Эмпирический способ нахождения скорости электромагнитных волн
Скорость распространения электромагнитных волн эмпирически определяют, изучая стоячие волны, которые получают, например, в цепи, которая изображена на рис. 1, где выход генератора соединен с проводами линии через конденсаторы. Когда генератор работает, между проводами появляются колебания напряжения, а, значит, существуют колебания электрического поля, то есть возникает электромагнитная волна.
Для понимания об интенсивности колебаний в различных точках линии включают лампы накаливания. В таких опытах можно показать, что стоячие волны в линии появляются только при определенной частоте генератора, когда она совпадает с частотой собственных колебаний линии.
Статья: Скорость распространения электромагнитных волн
Найди решение своей задачи среди 1 000 000 ответов
Измеряя расстояния ($\triangle x$) между соседними узлами или пучностями в стоячей волне, определяется $\frac$ длины волны ($\lambda $). При этом, известно, что:
где $\nu $ — частота генератора. Измерив $\nu $, легко найти скорость распространения электромагнитной волны. Опыты показали, что скорость электромагнитной волны ($v$) совпадает со скоростью света. В воздухе она приблизительно равна $v=c=3\cdot ^8\frac.$
Вывод скорости распространения электромагнитных волн из теории Максвелла
Раньше, чем электромагнитные волны были получены в экспериментах, Максвелл вычислил скорость этих волн, используя свою теорию поля. Рассмотри плоскую электромагнитную волну (одномерная задача, означающая, что $\overrightarrowи\ \overrightarrowзависят\ только\ от\ одной\ координаты,\ допустим\ x$), которая распространяется в однородной среде ($j_x=j_y=j_z=0,\ при\ \varepsilon =const,\ \mu =const$). В таком случае система уравнений Максвелла в скалярном виде будет записана как:
Исключим из уравнений Максвелла электрическое поле. С этой целью используем формулу, связывающую индукцию магнитного поля и его напряженность:
«Скорость распространения электромагнитных волн»
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети
и продифференцируем второе уравнение системы (2) по времени, получим:
Первое уравнение системы (2) продифференцируем по $x$, и используем уравнение:
в результате имеем:
Сравним уравнения (4) и (6), запишем:
Уравнение (7) есть волновое уравнение, следовательно, коэффициент, который стоит при $\frac<<\partial >^2H><\partial x^2>$ — квадрат скорости распространения электромагнитной волны:
$c$- скорость света. В вакууме скорость электромагнитных волн будет выражена как:
Теория Максвелла предсказала, что скорость распространения электромагнитных волн в вакууме равна скорости света — этот факт доказывает, что свет имеет электромагнитную природу.
Замечание 1
Основные процессы при распространении волн в проводах происходят не внутри проводов, а в окружающей их среде. Следовательно, если среда вне провода изменится, то скорость электромагнитных волн будет другой, длина волны при неизменной частоте генератора станет другой.
В справедливости формулы (8) легко убедиться на опыте, если часть двухпроводной линии, которая первоначально была в воздухе погрузить в воду. Для воды $\mu \approx 1,\ \varepsilon >1,$ следовательно, скорость электромагнитных волн в воде меньше, чем в воздухе, значит расстояние между соседними узлами (пучностями) станет меньше.
Следует учитывать, что $\mu \ и\ \ \varepsilon $ зависят от частоты. Поэтому при нахождении скорости применяя формулу (8) следует использовать их значения, соответствующие частоте колебаний в электромагнитной волне.
Задание: Параллельные провода (рис.2) находятся в некотором веществе, магнитная проницаемость которого равна $1$, диэлектрическая проницаемость не равна $1$. Они посредством индуктивности соединены с генератором. При высокой частоте колебаний $\nu $ в системе устанавливаются стоячие электромагнитные волны. Вдоль проводов перемещают газоразрядную трубку $А$, по интенсивности ее свечения определили положения пучностей напряженности электрического поля, расстояние между которыми оказались равны $\triangle x$. Какова диэлектрическая проницаемость вещества?
Решение:
Стоячие электромагнитные волны появляются как результат интерференции волн, которые распространяются по двухпроводной линии от генератора в прямом направлении с волнами, которые отражаются концами линии. При высокой частоте электромагнитных колебаний основные процессы, которые связаны с распространением волн, происходят в среде, которая окружает провода.
В соответствии с теорией Максвелла скорость электромагнитных волн в среде равна:
По условию задачи для данного вещества $\mu =1$, диэлектрическая проницаемость выразится из (1.1) как:
Скорость электромагнитных волн связана с длинной волны как:
\[v=\lambda \nu \left(1.3\right).\]
Расстояние между соседними пучностями в стоячей волне равно половине длины волны ($\triangle x=\frac\lambda $), в таком случае имеем:
Задание: Какова скорость распространения электромагнитной волны в концентрическом кабеле, в котором пространство между внешним и внутренним проводами заполнено диэлектриком с проницаемостью $\varepsilon ?$ Считайте, что потерями в кабеле можно пренебречь.
Решение:
Согласно теории Максвелла, скорость распространения электромагнитных волн в веществе равна:
Магнитную проницаемость среды можно считать равной единице, тогда выражение (2.1) перепишем в виде: