Почему для солнечных печей не используют большие линзы
Перейти к содержимому

Почему для солнечных печей не используют большие линзы

  • автор:

2.4 Концентрирующий солнечный коллектор.

Самый простой способ преобразования солнечной энергии в тепловую, состоит в использовании линзы, подобной той, которой каждый из нас пользовался в детстве. Если кусок газетной бумаги помещался в фокусе линзы, то через некоторое время он обязательно загорался. Принцип действия коллекторов с концентраторами солнечной энергии примерно такой же: тепловоспринимающая панель монтируется в фокусе линзы большого размера или зеркального отражателя, а вся установка регулируется так, что на тепловоспринимающую поверхность постоянно поступает солнечное излучение. Чтобы точно сконцентрировать прямой поток параллельных лучей, отражающая поверхность в сечении должна иметь форму правильной параболы. В качестве концентраторов, следящих за перемещением Солнца по небосводу, в основном используются параболоцилиндрические, имеющие форму водосточной трубы, разрезанной пополам, или параболоидные, похожие на круглую чашу. В фокусе параболоида достигается значительная степень концентрации излучения; в солнечных печах получают температуру свыше 2000°С, а на тепловых электростанциях — более 300°С. В случае параболоцилиндра степень концентрации солнечных лучей относительно небольшая, поэтому получаемая температура составляет 100 — 200°С.

Рис. 2.4 Концентрирующий солнечный коллектор.

Если использовать в качестве концентраторов солнечного излучения большие линзы, выполненные из толстого слоя стекла, то они будут тяжелыми и очень дорогими, поэтому обычно для этой цели применяют линзы Френеля, у которых профиль канавок, как у пластинок, получают теснением.

Рис. 2.5 Коллектор с солнечным концентратором в виде линзы Френеля.

б — линза Френеля в увеличении;

1 — линза Френеля;

2 – солнечное излучение (прямой поток);

3 — собственно линза Френеля (акриловая смола);

4 — фокус (тепловоспринимающая панель).

Возникает вопрос — почему же такие высокоэффективные фокусирующие коллекторы не применяют в солнечных домах. Дело в том, что существенным недостатком таких коллектора является необходимость использования следящего устройства, которое следовало бы за движением Солнца и ориентировало коллектор таким образом, чтобы сконцентрированное солнечное излучение постоянно поступало на солнечную панель. К тому же фокусирующие коллекторы гораздо дороже плоских. Кроме того, для систем теплохладоснабжения, а также горячего водоснабжения жилых домов не нужна такая высокая температура, следовательно, эти преимущества в данном случае не реализуются. Далее, коллекторы с концентраторами собирают только прямое солнечное излучение, поскольку концентрировать таким образом удается только параллельные лучи; рассеянное излучение эти коллекторы не фокусируют. В такой стране, как Япония, климат которой отличается влажностью, рассеянное излучение составляет 30-50%, поэтому в установках с концентраторами эта доля излучения не используется. Однако у фокусирующих коллекторов есть и положительные стороны, поэтому некоторые ученые думают о способах их использования без систем слежения за Солнцем.

Первый способ состоит в установке оси параболо-цилиндрического зеркала по оси «восток-запад». Если зафиксировать угол наклона в соответствии с движением Солнца по сезонам, то отпадет необходимость почасового слежения за Солнцем и нужно будет ручным способом менять лишь угол наклона в соответствии с временем года.

Второй способ предполагает сделать внутреннюю часть зеркального отражения более глубокой, чем у параболоида, и. Увеличить площадь тепловоспринимающей поверхности для того, чтобы солнечные лучи, отклонившиеся от главной оси, все Равно попадали на эту поверхность.

Такой способ обычно применяют в коллекторах с составными параболическими концентраторами (СРС) 1 . В США он уже частично используется даже в системах теплохладоснабжения. Чтобы снизить стоимость вакуумированных трубчатых коллекторов, в них нередко применяют зеркальные отражатели.

Уже давно высказываются различные мысли о возможности максимального концентрирования солнечного излучения без помощи параболоида. Однако эта проблема не решена. Только при использовании параболоида можно добиться, чтобы из фокуса излучение обратно шло параллельными лучами и наоборот — параллельные лучи собирает в фокусную линию только параболоид.

Почему для солнечных печей не используют большие линзы

Применение фокусирующих коллекторов

Самый простой способ преобразования солнечной энергии в тепловую состоит в использовании линзы, подобной той, которой каждый из нас пользовался в детстве. Если кусок газетной бумаги помещался в фокусе линзы, то через некоторое время он обязательно загорался. Принцип действия коллекторов с концентраторами солнечной энергии примерно такой же: тепловоспринимающая панель монтируется в фокусе линзы большого размера или зеркального отражателя, а вся установка регулируется так, что на тепловоспринимающую поверхность постоянно поступает солнечное излучение. Чтобы точно сконцентрировать прямой поток параллельных лучей, отражающая поверхность в сечении должна иметь форму правильной параболы. В качестве концентраторов, следяющих за перемещением Солнца по небосводу, в основном используются параболоцилиндрические, имеющие форму водосточной трубы, разрезанной пополам, или параболоидные, похожие на круглую чашу. В фокусе параболоида достигается значительная степень концентрации излучения; в солнечных печах получают температуру свыше 2000°С, а на тепловых электростанциях — более 300°С. В случае параболо-цилиндра степень концентрации солнечных лучей относительно небольшая, поэтому получаемая температура составляет 100 — 200°С.

Фокусирующие солнечные коллекторы

Рис. 2.1 Фокусирующие солнечные коллекторы.

Если использовать в качестве концентраторов солнечного излучения большие линзы, выполненные из толстого слоя стекла, то они будут тяжелыми и очень дорогими, поэтому обычно для этой цели применяют линзы Френеля, у которых профиль канавок, как у пластинок, получают теснением.

Коллектор с солнечным концентратором в виде линзы Френеля

Рис.2.2 Коллектор с солнечным концентратором в виде линзы Френеля: а — общий вид; б — линза Френеля в увеличении; 1 — линза Френеля; 2 — солнечное излучение (прямой поток); 3 — собственно линза Френеля (акриловая смола); 4 — фокус (тепловоспринимающая панель)

Возникает вопрос — почему же такие высокоэффективные фокусирующие коллекторы не применяют в солнечных домах. Дело в том, что существенным недостатком таких коллектора является необходимость использования следящего устройства которое следовало бы за движением Солнца и ориентировало коллектор таким образом, чтобы сконцентрированное солнечное излучение постоянно поступало на солнечную панель. К тому же фокусирующие коллекторы гораздо дороже плоских. Кроме того, для систем теплохладоснабжения, а также горячего водоснабжения жилых домов не нужна такая высокая температура, следовательно, эти преимущества в данном случае не реализуются. Далее, коллекторы с концентраторами собирают только прямое солнечное излучение, поскольку концентрировать таким образом удается только параллельные лучи; рассеянное излучение эти коллекторы не фокусируют. В такой стране, как Япония, климат которой отличается влажностью, рассеянное излучение составляет 30-50%, поэтому в установках с концентраторами эта доля излучения не используется.

Однако у фокусирующих коллекторов есть и положительные стороны, поэтому некоторые ученые думают о способах их использования без систем слежения за Солнцем.

Первый способ состоит в установке оси параболо-цилиндрического зеркала по оси «восток-запад». Если зафиксировать угол наклона в соответствии с движением Солнца по сезонам, то отпадет необходимость почасового слежения за Солнцем и нужно будет ручным способом менять лишь угол наклона в соответствии с временем года.

Второй способ предполагает сделать внутреннюю часть зеркального отражения более глубокой, чем у параболоида, и Увеличить площадь тепловоспринимающей поверхности для того, чтобы солнечные лучи, отклонившиеся от главной оси, все Равно попадали на эту поверхность.

Такой способ обычно применяют в коллекторах с составными параболическими концентраторами (СРС)1. В США он уже частично используется даже в системах теплохладоснабжения. Чтобы снизить стоимость вакуумированных трубчатых коллекторов, в них нередко применяют зеркальные отражатели. Уже давно высказываются различные мысли о возможности максимального концентрирования солнечного излучения без помощи параболоида. Однако эта проблема не решена. Только при использовании параболоида можно добиться, чтобы из фокуса излучение обратно шло параллельными лучами и наоборот — параллельные лучи собирает в фокусную линию только параболоид[8].

Для оценки эффективности поглощающих покрытий применяются следующие показатели:

· коэффициент поглощения (абсорбации), а — обычно находится в пределах 0,8-0,98. Данный коэффициент представляет собой отношение поглощенной энергии к падающей;

· коэффициент излучения (эмиссии), e — обычно в пределах 0,95 — 0,02 для различных типов покрытий. Данный коэффициент представляет собой отношение излученной энергии к поглощенной;

· коэффициент селективности, a/e , применяется для сравнения характеристик различных видов поглощающих поверхностей. Чем выше значение данного коэффициента, тем лучшими характеристиками обладает поглощающая поверхность.

· Современные высокоселективные покрытия обладают очень высокими значениями коэффициента селективности, значительно повышая тем самым КПД солнечных коллекторов. К тому же, практически лишь коллекторы оснащенные покрытиями такого типа могут эффективно работать в холодный период года вследствие гораздо меньшей зависимости КПД от разницы температур.

Тепловая эффективность различных типов коллекторов

Рис. 2.3 Тепловая эффективность различных типов коллекторов: Обозначения:1 — вакуумный трубчатый коллектор; 2 — плоский коллектор с селективным покрытием; 3 — открытый коллектор

С целью наглядного сравнения характеристик тепловой эффективности различных типов коллекторов, приведем график КПД для трех рассмотренных типов коллекторов при мощности солнечного излучения в 600 Вт/кв. м.

В настоящий момент, наиболее перспективными в условиях Украины являются плоские солнечные коллекторы горячего водоснабжения, вследствие все сезонности, простоты и надежности конструкции при невысокой цене в этом сегменте оборудования.

3. Преимущества использование солнечной энергии

1. Экономия за счет снижения потребления природного газа или электричества. Ежегодно на 1 м.кв. поверхности земли в Украине приходит от 900,00 до 1300,00 кВтч солнечной энергии. Это количество солнечной энергии в среднем соответствует энергоемкости 100,00 л дизельного топлива или 100,00 м.куб. природного газа. Бесплатную солнечную энергию можно направить на нагрев воды или на поддержку отопления. И ежегодно экономить на приготовлении горячей воды до 60…95% затрачиваемых энергоносителей, на отоплении до 30…40% энергоресурсов, на подогреве воды в бассейне до 70… 95% энергоресурсов. Ежегодную экономию от использования солнечной энергии довольно просто сосчитать. Дополнительно нужно учесть ежегодный рост тарифов на 10…40%, потерю теплотворной способности природного газа (иногда до 50%).

2. Экономия за счет перехода в другую категорию потребителей природного газа. Бытовые потребители природного газа разделены на 4 категории: до 2500,00 м.куб. в год, от 2500,00 до 6000,00 м.куб. в год, от 6000,00 до 12000,00 в год, более 12000,00 м.куб в год. Например, если потребитель в течение года израсходовал 5999,00 м.куб. газа, то он заплатит за год 6586,90 грн. (по тарифу 1,0980 грн./м.куб.). А если потребитель в течение года израсходовал 6000,00 м.куб. природного газа, то он заплатит за год 13489,20 грн. (уже по тарифу 2,2482 грн./м.куб.). Таким образом при перерасходе газа в размере 1 м.куб., потребитель переплатил за год 6902,30 грн. Использование солнечной энергии во многих случаях позволяет снизить потребление природного газа, и перейти в категорию потребителей природного газа с меньшим тарифом.

3. Экономия за счет увеличения ресурса котельного оборудования. Летний период для котлов большой мощности (40кВт и более) является наиболее “губительным” и ”напряженным”. Как правило, в это время, котел работает только в режиме приготовления горячей воды в бойлере косвенного нагрева. А это означает, что котел работает с постоянным недобором мощности — очень частые включения и выключения котла, перерасход топлива, прогорание горелки, низкий КПД работы. Как результат, снижение срока службы котельного агрегата. Использование солнечных коллекторов для приготовления горячей воды позволяет полностью остановить котел вне отопительного периода. И тем самым существенно увеличить его срок службы.

4. Высвобождение электрических мощностей. Уменьшение подводимых электрических мощностей. Снижение электрической нагрузки на сеть. Нагрев воды в гостиницах при помощи электрических бойлеров требует подведения дополнительных мощностей. Так, для гостиницы на 20 номеров, требуется дополнительно подвести или высвободить электрическую мощность в 20…40кВт. Во-первых, это связанно со значительными дополнительными затратами, а во-вторых, во многих регионах подстанции перегружены, и получить дополнительные мощности не представляется возможным. Использование солнечных коллекторов для приготовления горячей воды вместо традиционных электрических бойлеров, позволяет сократить подводимые мощности в 2…3 раза. И как минимум сэкономить на приобретении и подведении этих мощностей.

5. Экологическая составляющая. Использование экологически чистой солнечной энергии — это возможность внести свой вклад в сохранение чистоты того уголка, где живем мы, наши дети и наши друзья. Особенно важно это для крымского региона, где от чистоты окружающей среды напрямую зависит популярность нашего курорта. Использование солнечной энергии как гарантия чистоты окружающей нас природы может стать неплохим брендом для мест отдыха.

6. Снижение зависимости от поставок энергоносителей. Тепло и горячая вода — незаменимые элементы для комфортного существования любого человека. Политическая и экономическая ситуация, перегруженные и исчерпавшие свой ресурс электрические и газовые сети постоянно ставят под угрозу стабильность газо- и электроснабжения.

Использование солнечной энергии для приготовления горячей воды и поддержки отопления — это возможность постоянно иметь резерв и в значительно меньшей степени зависеть от надежности поставок традиционных энергоресурсов.

вакуумный коллектор солнечной энергия

Статья «Изобретение прозрачного концентратора»

Изобретен прозрачный концентратор солнечной энергии 21 августа 2014 года, 15:50. Ученые из Мичиганского государственного университета (США) разработали новый тип концентратора солнечной энергии: его можно помещать поверх стекла, а поскольку сам концентратор прозрачный, виду он при этом не мешает. О новой разработке рассказывает phys.org. Прозрачный люминесцентный концентратор солнечной энергии может использоваться на любой гладкой поверхности, например на окнах в высоком здании. Ученые уже некоторое время старались получать энергию с помощью солнечных элементов, расположенных вокруг люминесцентных пластмассообразных материалов. Однако до сих пор эксперименты проваливались по всем статьям и полученной энергии оказывалось мало, и материалы оказывались ярко окрашенными. Теперь же ученым впервые удалось сделать прозрачным сам люминесцентный слой, между тем как созданные учеными органические молекулы поглощают невидимые волны солнечного света. Затем этот свет переправляется к краю пластмассы, где он преобразуется в электричество с помощью тонких полосок из фотогальванических солнечных элементов. А поскольку материалы не поглощают и не излучают свет в видимом спектре, человеческому глазу они кажутся совершенно прозрачными. В идеале ученые хотят создать такие устройства для концентрации солнечной энергии, которые были бы совершенно незаметны. Напомним, что прошлой зимой в пустыне Мохаве (Калифорния, США) заработала новая система генерации солнечной электроэнергии, которую никак не назовешь незаметной. Общая мощность станции Ivanpah, занимающей площадь 13 км2, — 400 мВт1, она способна обеспечить электричеством 140 000 домов. Электростанция представляет собой около 350 000 гигантских зеркал, отражающих солнечный свет на три водонапорные башни[10]

Статья «В луганском садике запущен первый солнечный коллектор, как альтернативный источник тепла»

Открытие первого солнечного коллектора в детсаду №38 состоялось в Луганске 10 октября 2013 года с участием представителей ПРООН. Об этом сообщает корреспондент «ОстроВа».

Сегодня прошло торжественное открытие солнечного коллектора в детском саду №38 (ул. Газопроводная, г. Луганск). На мероприятие была приглашена Постоянный координатор ООН/Постоянный представитель ПРООН в Украине Алессандра Тисо, которая впервые посещает Луганск и область в рамках своего официального визита в Восточные регионы Украины.

В открытии также приняли участие заместитель мэра Луганска Марина Воротникова и начальник городского управления образования Валентина Кияшко, а также менеджер проекта ПРООН «Программа Устойчивого Развития Луганской области» Александр Северин и представители родительского комитета детского сада.

«В рамках проекта на территории детского сада установлен солнечный вакуумный коллектор Atmosfera CBK — Standart -20. Помещение детского ясли-сада оборудованы гелиосистемой для обеспечения автономного горячего водоснабжения здания детсада. Гелиосистема представляет собой оборудование для нагрева воды , в состав которой входят солнечные коллекторы , система управления с насосом и бак — аккумулятор . Принцип действия заключается в следующем : в солнечном коллекторе система управления с насосом обеспечивает циркуляцию коллекторного жидкости ( пропиленгликоль ) внутри оборудования. В хорошо изолированном баке — аккумуляторе тепло жидкости передается воде (теплообменник ) . Таким образом , нагретая вода сохраняет тепло и ночью , и в дождь , а по необходимости может догреваться резервным электрическим тэном», — рассказал член Национального исполнительного комитета ПМГ ГЭФ ПРООН Владимир Ширяев.

Внедрение проекта позволит сэкономить 500 кВт электроэнергии в месяц. Проект «Использование альтернативной энергии для улучшения жизни общества» внедряется общественной организацией «ЭКОЛОГИЧЕСКИЙ МИР» и направлен на повышение осведомленности общества по вопросам использования возобновляемых источников энергии, а именно энергии солнца и противодействия изменениям климата, в дальнейшем будет способствовать повышению энергоэффективности как на локальном, региональном, так и на национальном уровне.

Солнечная энергетика — направление нетрадиционной энергетики, основанной на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов.

Концентраторы солнечных лучей

В детстве, почти каждый из нас пробовал использовать энергию солнца через линзу, выжигая на дощечке имена или подпаливая бумагу. О линзе, как концентраторе солнечных лучей мы не знали. Ее воспринимали как игрушку или очередным детским увлечением.

Подготавливая материал очередной статьи, я все время ловлю себя на мысли, что масса полезной и познавательной информации приходит от моих коллег из социальных сетей. Вот и в этот раз, из группы facebook «Дом твоей мечты» пришла информация о концентраторах солнечного света, на основе сферических линз.

Да, да тех самых линз, которыми мы так любили играться в детстве. Но только линзы изготовлены по новой технологии, так называемые линзы Френеля (Август Френель – французский математик 19 век). Ранее линзы Френеля использовались только в маяках для усиления силы света от лампы для увеличения расстояния видимости.

Никто ранее не догадывался, что этот эффект можно применить для создания мощных солнечных батарей или солнечных печей. Результатом эксперимента, который провели ученые из НАСА с этими линзами, стала миниатюрная солнечная система, под названием SolarVolt.

Новая установка за счет линз Френеля увеличила световой поток в двадцать раз. При этом конечное производство электричества увеличилось на 15 процентов. В солнечных панелях использовали такие линзы толщиной всего в 0,2 миллиметра.

При помощи линз концентрация солнечного света происходит на меньшей площади, что дает возможность уменьшить габаритные размеры установки, не теряя при этом количество вырабатываемой электроэнергии. По новой технологии значительно уменьшаются размеры солнечных панелей, а при реконструкции уже существующих станций повысится их производительность при той же занимаемой площади.

Новая технология увеличения эффективности начала применяться в космической технике на космических кораблях для запуска ионного двигателя. Но опустимся с космических высот на землю и попытаемся разобраться, где же можно использовать эффект линзы, как концентратора солнечного света.

Для более детального описания данной новой технологии я использовал ту информацию, которые прислали мои коллеги.

«Концентраторы солнечных лучей могут быть использованы в двух направлениях. Одно из них – применение линз, которые помещаются поверх фотоэлементов. За счёт размещения на солнечной батарее этих специальных линз в восемь раз повышается концентрация светового потока. Таким образом, появляется возможность уменьшить количество фотоэлементов арсенида галлия, которые составляют основную часть стоимости солнечных батарей.

А второе, использование солнечного света для работы солнечных печей.

Солнечные линзовые панели.

Самодельные солнечные панели с применением линз были установлены в Калифорнии, еще в 1998 году, для обеспечения электричеством частного дома. Последние 10 лет учеными разных стран достигнуты большие успехи в технологиях по изготовления тонких линз для солнечных электрических панелей.

Самой известной крупной компанией, которая попыталась масштабно внедрить линзовые солнечные панели, стала компания SolFocus (Калифорния США). В 2006 году им удалось разработать компактные линзовые солнечные панели. На их создание использовалось гораздо меньше кремния, чем на обычные панели, так как они использовали линзы и зеркала, чтобы сконцентрировать солнечный свет.

Такие концентраторы солнечного света увеличивали солнечную энергию в 500 раз, и таким образом они наращивали продуктивность фотоэлементов. Что в то время сокращало расходы на производство солнечной энергии практически на 40%.

Однако, по заключению разработчиков, систем SolFocus, есть одно но: «При использовании системы фотогальванических панелей вы захватываете только небольшой кусочек неба, поэтому очень важно, чтобы система могла следовать за солнцем от рассвета до заката» (автор).

За последующие 5 лет компания SolFocus реализовала несколько крупных проектов и собрала около 230 млн. $ инвестиций. Системы SolFocus установлены и работают в 13 странах от США (на Гавайском острове Кона, а также в Калифорнии и Колорадо) до острова Крит, и вплоть до Саудовской Аравии, Малайзии и малонаселённых областей Австралии.

Это модульная система, и поэтому мощность комплексов фотогальванических панелей может быть от нескольких сотен киловатт до более 50 мегаватт. Однако, учитывая тот фактор, что для постоянного движения панели SolFocus нужен актуатор (механизм приводящий в движение солнечную панель, который находится в задней ее части), что связано с большими эксплуатационными расходами по техническому обслуживанию, данное направление не получило интенсивного развития.

Кроме американцев, в направлении создания концентраторов солнечных лучей для получения электрической энергии трудились российские ученые (Петербург) и немецкие. Последним удалось при помощи такой технологии увеличить КПД солнечных панелей до 40%, а в полевых испытаниях эффективность установки достигла 28,5%.»

В заключении можно сказать, что получение электроэнергии от солнечных панелей с применением линз, гораздо эффективней, чем традиционные плоские солнечные панели. Важен факт, что данная технология может применяться как в быту (частное домостроение) так и в промышленном масштабе, при строительстве солнечных электростанций. Мы надеемся, что данное направление займет достойное место среди возобновляемых источников энергии.

Понравилась статья, поделись с друзьями. Ваши отзывы и пожелания в комментариях всегда приветствуются.

Использование солнечного тепла, например солнечные тепловые коллекторы: . с линзами в качестве концентрирующих элементов – F24J 2/08

Энергоэффективный солнечный коллектор (ЭСК) относится к возобновляемым источникам энергии, в частности энергии Солнца, и предназначен для поглощения солнечной радиации, преобразования ее в тепловую энергию в целях горячего водоснабжения жилых и нежилых помещений различного назначения. Цель изобретения заключается в повышении эффективности использования энергии Солнца, уменьшении толщины, снижении веса и себестоимости ЭСК. Использование ЭСК косвенно ограничивает выброс парниковых газов за счет замены традиционных источников энергии тепловых электростанций, используемых для горячего водоснабжения. 9 з.п.ф-лы, 3 ил., 1 табл.

Изобретение относится к способу преобразования солнечной энергии в химическую и аккумулирования ее в продуктах парогазовой конверсии углеводорода, в котором с использованием концентратора солнечной энергии проводят реакцию паровой каталитической конверсии метаносодержащего газа с получением продуктов реакции, содержащих водород и диоксид углерода. Способ характеризуется тем, что в концентраторе солнечной энергии проводят раздельно одновременный ступенчатый нагрев водяного пара и его смеси с метаносодержащим газом, который направляют затем на реакцию паровой каталитической конверсии метаносодержащего газа в секционированный каталитический реактор, размещенный вне концентратора солнечной энергии, уменьшают расход водяного пара и его смеси с метаносодержащим газом по мере снижения потока солнечной энергии. Использование настоящего способа позволяет снизить тепловые затраты на процесс получения энергоносителей, а также эффективно поставлять различные энергоносители в условиях отсутствия источников метана, а также в период снижения потока солнечной энергии в ночные часы и при увеличении облачности. 7 з.п. ф-лы, 1 ил.

Изобретение относится к установке для выработки электроэнергии, а именно к установке для выработки электрической энергии с использованием солнечной энергии. Установка для выработки электрической энергии с использованием солнечной энергии содержит опорную конструкцию (3), несущую солнечную батарею (2) с возможностью ее перемещения. Солнечная батарея (2) содержит установленную на несущей конструкции (21) панель (22) для сбора и преобразования солнечной энергии в электрическую, а также концентрирующее устройство, установленное на несущей конструкции (21) над панелью (22). Опорное устройство (3) содержит дисковый элемент (32), установленный на полом основании (31) с возможностью вращения вокруг своей центральной оси (а) посредством привода, расположенного в основании (31). Опорное устройство (3) также содержит телескопический стержень (34) и два вертикальных опорных стержня (35), соединяющих между собой несущую конструкцию (21) и дисковый элемент (32). Блок управления управляет приводом и телескопическим стержнем (34) в зависимости от направления солнечного излучения, так что панель (22) для сбора солнечной энергии перемещается навстречу солнечному свету. При уменьшении интенсивности солнечных лучей изобретение должно обеспечить эффективный сбор солнечной энергии и стабильную выработку электроэнергии. 9 з.п. ф-лы, 10 ил.

Изобретение относится к водонагревателям, в частности к установке для подогрева воды с использованием солнечной энергии. Установка для подогрева воды с использованием солнечной энергии содержит опору (3) для удержания несущей конструкции (21) и обеспечения возможности ее перемещения. На установочной части несущей конструкции (21) имеется концентрирующее устройство для концентрации солнечного света на теплопроводящей трубе (22), расположенной в несущей конструкции (21). Труба (22) поглощает тепловую энергию концентрируемого на ней солнечного света и передает эту энергию находящейся в ней воде, тем самым нагревая ее. Опора (3) содержит дисковый элемент (32), установленный с возможностью вращения вокруг своей центральной оси (а) на полом основании (31) и связанный с приводом, расположенным в основании (31). Опора (3) содержит также телескопический стержень (34) и два вертикальных опорных стержня (35), соединяющих между собой несущую конструкцию (21) и дисковый элемент (32). Блок управления управляет приводом и телескопическим стержнем (34), перемещая в зависимости от направления солнечного излучения установочную часть несущей конструкции (21) навстречу солнечному свету. Изобретение должно обеспечить создание установки для подогрева воды с использованием солнечной энергии. 8 з.п. ф-лы, 9 ил.

Изобретение относится к устройствам для преобразования солнечной энергии. Устройство для преобразования солнечной энергии содержит улавливающий солнечное излучение блок, содержащий, по меньшей мере, одну линзу, имеющую входную поверхность для падающего солнечного излучения и выходную поверхность для испускания солнечного излучения в преломленной форме к концентрирующему солнечное излучение блоку, содержащему отражающую поверхность для отражения солнечного излучения, падающего на отражающую поверхность с выходной поверхности линзы, по меньшей мере, к одной целевой области концентрирующего солнечное излучение блока, отличающееся тем, что устройство содержит позиционирующее средство для осуществления ориентации улавливающего солнечное излучение блока и концентрирующего солнечное излучение блока относительно друг друга путем поворота вокруг, по меньшей мере, одной оси, перпендикулярной к плоскости, образуемой линзой. Изобретение должно обеспечить эффективное преобразование солнечной энергии при различных положениях солнца и которое, кроме того, имеет небольшие конструктивные размеры. 22 з.п. ф-лы, 6 ил.

Изобретение относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими приемниками излучения и концентраторами солнечного излучения в виде линз Френеля. Солнечный фотоэлектрический модуль содержит концентратор солнечного излучения в виде линзы Френеля с концентрическим рабочим профилем, в фокальной плоскости линзы установлен фотопреобразователь, перед которым по ходу солнечных лучей расположен вторичный отражатель, фотопреобразователь установлен на плоскости охлаждающего устройства. Линза Френеля состоит из четырех зон рабочего профиля, каждая из которых имеет свой точечный оптический фокус в плоскости высоковольтного квадратного фотопреобразователя, причем фокусы расположены на диагоналях фотопреобразователя между центральной точкой и вершинами его квадрата, и расстояния между фокусами этих зон не более 0,5 d, где d — диаметр фокального пятна от соответствующей периферийной зоны линзы Френеля, при этом зоны линзы имеют одинаковые площади миделей, и выходное отверстие вторичного отражателя имеет квадратную форму, по площади равную или большую площади фотопреобразователя. Изобретение должно увеличить КПД модуля и снизить стоимость вырабатываемой электроэнергии. 2 ил.

Изобретение относится к солнечной энергетике и может найти применение, например, для концентрации солнечного излучения на фотогальванические ячейки. Голографический концентратор солнечной энергии, включающий плоскую прозрачную пластину с прилегающим к ее входной грани голографическим элементом, образованным двумя примыкающими голографическими решетками, углы дифракции которых имеют противоположные знаки, блок селективных линейных фотопреобразователей, дополнительно содержит последовательно оптически связанные двойную голографическую решетку, непосредственно прилегающую к выходной грани плоской прозрачной пластины, оптически связанную с голографическими решетками голографического элемента, и набор селективных цилиндрических линз Френеля, оптически связанный с блоком селективных линейных фотопреобразователей. Длина каждого селективного линейного фотопреобразователя больше длины соответствующей селективной цилиндрической линзы Френеля на величину, определяемую углом ее поля зрения. Ширина двойной голографической решетки равна удвоенной толщине плоской прозрачной пластины с прилегающим к ее входной грани голографическим элементом. Технический результат — повышение эффективности концентрации падающего солнечного излучения. 1 ил.

Изобретение относится к области энергосбережения и может быть использовано отдельными хозяйствами, а также крупными компаниями для обеспечения своих предприятий дополнительной электроэнергией. Устройство для превращения солнечной энергии в электрическую содержит термоэлектрический генератор, систему охлаждения, включающую электрический насос, блок сравнения, блок управления. Дополнительно содержит выпуклые линзы, установленные на платформе с возможностью приема солнечных лучей и фокусирования солнечных лучей на теплообменнике горячих спаев термоэлектрического генератора; платформу, установленную на исполнительном механизме с червячным редуктором с возможностью синхронного вращения с электронными часами вокруг солнца; датчики температуры, установленные на горячих и холодных спаях и связанные с тепловыми реле и блоком сравнения; электронный терморегулятор, связанный с каналами подачи и отвода охлаждающей воды; электрический вентилятор, вход которого подключен через тепловое реле к блоку питания, выход связан с теплообменником горячих спаев. Полученная электроэнергия через аккумуляторы направляется к потребителям. Таким образом, устройство для превращения солнечной энергии в электрическую позволяет получить в весенне-летне-осеннее время электроэнергию. 3 ил.

Изобретение относится гелиотехнике, в частности к устройствам для солнечного обогрева жидкости, преимущественно воды, используемой для бытовых нужд. Сущность технического решения состоит в том, что для фокусировки солнечных коллекторов применяют линзы многослойные, состоящие из опорного стеклянного листа, несущего систему соосных стеклянных листов так, что листы системы, образующие пакет-линзу, имеют разные диаметры и/или толщину. Изобретение должно обеспечить упрощение технологии изготовления линз фокусирующих солнечных коллекторов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области гелиотехники, в частности к солнечным фотоэлектрическим модулям с концентраторами излучения для получения электричества. Фотоэлектрический модуль содержит боковые стенки, верхнюю панель из силикатного стекла, плосковыпуклые линзы, закрепленные на внешней поверхности нижней панели и соосные с соответствующими линзами Френеля, а также герметично соединенные с внешней поверхностью нижней панели теплоотводящие лотки с плоским дном и фотоэлементами на внутренней поверхности указанного дна, через центральную продольную линию которых проходят оптические оси соответствующих линз Френеля, причем расстояние между нижней панелью и плоской поверхностью дна теплоотводящих лотков больше суммы толщин фотоэлементов и плосковыпуклой линзы, но не превышает их фокусное расстояние, а в боковых стенках непосредственно под верхней и над нижней поверхностями соответствующих панелей выполнены вентиляционные отверстия. Модуль содержит закрепленные на внешней поверхности одной из боковых стенок аналогичные первым плосковыпуклые линзы и теплоотводящие лотки, на внутренней поверхности дна которых установлены солнечные фотоэлементы, инфракрасные фотоэлементы установлены на внутренней поверхности дна первых теплоотводящих лотков, а также промежуточную панель со спектроделительным покрытием, установленную под углом к оптической оси модуля, обеспечивающим оптическую связь указанного покрытия с первыми и вторыми плосковыпуклыми линзами, при этом на внешней поверхности дна всех теплоотводящих лотков термоэлектрические преобразователи приведены в контакт с воздушными радиаторами. Изобретение должно обеспечить повышение КПД преобразования солнечного излучения в электроэнергию при одновременном увеличении ресурса работы устройства. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области гелиоэнергетики. Устройство содержит станину, протяженную линзу, имеющую овальное поперечное сечение, теплопоглощающий элемент, трубопроводы, сообщающиеся с системой подачи и удаления жидкости. Линза и теплопоглощающие элементы свернуты в спираль и закреплены на поворотной штанге с опорой на станину. Штанга снабжена противовесом и механизмом ее отклонения, обеспечивающим положение линзы по направлению к источнику солнечной энергии. Теплопоглощающий элемент выполнен в виде тонкостенной круглого сечения трубы с вогнутой частью. Устройство для нагревания жидкости солнечной энергией отличается оригинальностью, компактностью и повышенной эффективностью. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области солнечной энергетики, более конкретно — к области создания солнечных фотоэлектрических модулей с концентраторами солнечного излучения, и может быть применено в наземных солнечных энергоустановках, предназначенных для систем автономного энергоснабжения в различных климатических зонах. Линейный концентратор светового излучения представляет собой протяженные фрагменты треугольных по сечению сопряженных между собой призм линейной линзы Френеля. Преломляющие свет грани концентратора выполнены таким образом, что углы вершин и впадин сопряженных граней призм имеют значения от 90° до 180°, и световой поток перераспределяется на две или более светоприемные площадки. Изобретение должно обеспечить улучшение оптических характеристик линейного концентратора светового излучения. 2 ил.

Изобретение может быть применено в наземных солнечных энергоустановках с концентраторами излучения, предназначенных для систем автономного энергоснабжения в различных климатических зонах. Фотоэлектрический модуль содержит боковые стенки и фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а также солнечные фотоэлементы с теплоотводящими основаниями. Теплоотводящие основания расположены на тыльной панели из силикатного стекла или выполнены в виде лотков с плоским дном, через центральные продольные линии поверхностей которых проходят оптические оси соответствующих линз Френеля. Введена дополнительная промежуточная панель из силикатного стекла, на фронтальной или тыльной стороне которой установлены плоско-выпуклые линзы, соосные с соответствующими линзами Френеля. Лотки своими верхними частями могут быть герметично соединены с тыльной поверхностью промежуточной панели. Светоприемные поверхности фотоэлементов находятся в фокусном пятне двух концентраторов — линз Френеля и плоско-выпуклых линз. В зависимости от варианта выполнения модуля расстояние между промежуточной панелью и теплоотводящими основаниями, фокусное расстояние плоско-выпуклых линз, толщины фотоэлементов, промежуточной панели и плоско-выпуклых линз связаны соотношениями, приведенными в формуле изобретения. Технический результат — обеспечить увеличение энергопроизводительности фотоэлектрического модуля. 5 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к гелиоэнергетике, в частности к высокоэффективным солнечным энергетическим модулям с концентратором для получения электрической энергии. В солнечном модуле в центральной части первичного конического концентратора со сквозным отверстием соосно его оптической оси размещен и закреплен датчик слежения, расположенный внутри первичного охлаждающего устройства с двумя расширяющимися коническими законцовками у его вершины и у его основания, при этом первичный приемник закреплен между коническими законцовками, имеющими зеркальную поверхность и выполняющими функции вторичного концентратора, а линза Френеля расположена и закреплена между первичным и вторичным концентраторами у их основания с помощью ободка, датчик слежения закреплен своим основанием на вершине вторичного охлаждающего устройства с призматическими законцовками, внутренняя часть которых выполнена в виде радиаторных ребер, а вторичный приемник закреплен на внешней стороне призматических законцовок. Изобретение должно обеспечить получение простой в изготовлении высокоэффективной и дешевой сильно концентрирующей системы для солнечного фотоэлектрического модуля. 2 ил.

Изобретение относится к гелиоэнергетике, в частности, к солнечным энергетическим модулям с концентратором, для получения электрической энергии. В солнечном фотоэлектрическом модуле с концентратором, содержащем датчик слежения, линзу Френеля, приемник, расположенный в фокальной области с охлаждающим устройством, линза Френеля имеет центральное сквозное отверстие, при этом верхняя часть датчика слежения прикреплена к внутренней поверхности, а основание датчика закреплено на вершине охлаждающего устройства с призматическими законцовками, внутренняя часть которых выполнена в виде радиаторных ребер, а приемник закреплен на внешней стороне призматических законцовок. Изобретение должно обеспечить упрощение конструкции систем охлаждения приемника и слежения за солнцем, повысить компактность и мобильность модуля. 2 ил.

Изобретение относится к гелиотехнике, в частности к способам переработки и получения искусственного жидкого топлива из углеродсодержащих материалов растительных отходов (древесной массы, растительных сельскохозяйственных отходов, например, подсолнечной лузги и др.) фототермолизом в установках, концентрирующих солнечное излучение. Способ получения искусственного жидкого топлива состоит в подготовке шихты путем измельчения растительных отходов, сушки до влажности 10%, калибровки, обработки шламом углистого вещества, в пиролизе шихты, обезвоживании и сжижении парогазообразной смеси, в светотермическом воздействии — фототермолизе (фотоактивации и фотодиссоциации) пиролизных газообразных продуктов при температуре 200÷240°С и атмосферном давлении с последующим пропусканием химически активных продуктов — газов CH 4 , C 2 H 4 , C n H m , СО, Н 2 , СО 2 и др. через парафиновый слой с катализатором Fe при температуре 240°С и атмосферном давлении. Описана также установка для осуществления способа. Изобретение позволяет расширить сырьевую базу для получения жидких топлив. 2 н. и 1 з.п.ф-лы, 2 ил.

Изобретение относится к концентраторам солнечной энергии, в частности к надувным пленочным рефлекторам медицинского и бытового назначения. Солнечный рефлектор содержит прозрачный и металлизированный слои полимерной пленки. Слои герметично скреплены (сварены) по двум окружностям, при этом получившаяся наружная камера при заполнении ее воздухом через штуцер служит для сохранения формы окружности, а внутренняя окружность при ее заполнении воздухом через другой штуцер приобретает форму линзы и металлизированная поверхность ее служит вогнутым зеркалом. Разная степень наполнения внутренней камеры позволяет изменять фокусное расстояние. Устройство снабжено тремя выступами и с отверстиями для крепления рефлектора и покачивания его при использовании в медицинских целях. Изобретение должно обеспечить упрощение конструкции солнечного рефлектора с одновременным уменьшением потери энергии, возможность его широкого использования в медицине (лечение концентрированным солнечным светом) и в быту как нагревательного прибора. 2 ил.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *