Бетник для мощных транзисторов
Несмотря на то, что народ массово кинулся в ламповое и микросхемное усилителе-строение, а на «рассыпухе» — на полевые транзисторы, все еще значительную долю занимают «рассыпные» УМЗЧ на биполярных «выхлопниках». Тем более, подобные аппараты постоянно попадаются для ремонта. Не вызывает сомнений постулат, что для минимизации нелинейных искажений требуется попарный подбор комплементарных транзисторов по крайней мере по коэффициенту их усиления. Особую важность это приобретает для мощных (сценических) УМЗЧ, в которых используется по несколько запараллеленных «выхлопников». Если для подбора маломощных транзисторов достаточно «китайских» мультиметров с режимом «бетирования», то для мощных транзисторов (по крайней мере отечественных транзисторов старых разработок), проблема измерения коэффициента их усиления (h21e) осложняется еще и тем, что он существенно зависит от тока коллектора. Следовательно, измерять h21e приходится при по крайней мере двух значениях коллекторного тока. Как-то попались мне для ремонта несколько мощных УМЗЧ, на выходе которых в каждом плече стояло по 4. 8 транзисторов КТ864/865. Покупать по несколько коробок с последующим отбором дома — выходило крайне накладно. Поэтому за день по-быстрому собрал «бетник», конструкция которого и приводится, с помощью которого отобрал нужное количество согласованных транзисторов прямо на рынке. Пользуюсь этим прибором уже более 4-х лет. «Полет — нормальный». Схемотехника «бетника», в принципе, известная. Он представляет собой микросхемный стабилизатор тока с выходным регулирующим транзистором, коллекторный ток которого и стабилизируется. Его h21e измеряется по току, поступающему в базу транзистора стрелочным измерительным прибором PA1, включенным в диагональ диодного моста, что исключает необходимость коммутации при испытании транзисторов разной структуры. Дополнительный умощняющий каскад на транзисторах VT1-VT2 нужен чтобы не перегружать выход ОУ при тестировании транзисторов с малыми значениями h21e при большом коллекторном токе. На схеме не показана кнопка, кратковременно подающая питание на всю схему, что позволяет экономить автономные источники питания и защищает измерительный прибор при проверке пробитых транзисторов, при неправильном их подключении или при неправильном выборе проводимости. Двухцветный светодиод VD1 индицирует, кроме наличия питания, и полярность тестируемого транзистора (красный — n-p-n, зеленый — p-n-p). Измерения проводятся при коллекторном токе 50 и 500 мА, выбираемых переключателем SA3. Измерения h21e проводятся в трех диапазонах, выбираемых переключателем SA2 с минимальными значениями 10, 30 и 100. Относительным недостатком является обратная и существенно неравномерная шкала измерительного прибора: Опорное напряжение для стабилизатора тока задается стабилитронами VD2-VD3, включенными встречно-последовательно. Их следует подобрать по одинаковому напряжению стабилизации. В принципе, оптимальным вариантом было бы использование двуханодного термокомпенсированного стабилитрона, но мне они на напряжение стабилизации менее 6,2 В как-то не попадались, а опорное напряжение желательно бы делать поменьше — тогда на испытуемом транзисторе падает большая часть напряжения питания, что тоже важно для правильного измерения (например, h21e у КТ8101/8102 существенно падает при коллекторном напряжении мене 5 В). Переключение полярности напряжения, поступающего на формирователь опорного напряжения и испытуемый транзистор разных типов производится переключателем SA1. Номинал эмиттерного резистора R11, задающего коллекторный ток 50 мА, приходится подбирать в зависимости от полученного опорного напряжения: При этом измерительный мост просто перемыкается накоротко. Номинал эмиттерного резистора R10, подключаемого параллельно R11 для задания тока 500 мА должен быть в 9 раз меньше, чем у R11. Номиналы резисторов измерительной части рассчитаны для головки на ток 100 мкА сопротивлением 550 Ом. Для других головок их придется пересчитать. Настройка производится при отключенном от генератора тока диодном мосте. При невозможности точного подбора номиналов низкоомных резисторов ставится ближайшего большего номинала, параллельно которому — более высокоомный, чтобы получить нужное сопротивление. Питается он от любого сетевого адаптера на напряжение 12…15 В и ток до 500 мА, либо от комплекта батарей на то же напряжение. В оригинальном варианте сетевой трансформатор с выпрямителем и фильтрующим конденсатором встроен прямо в корпус прибора. Алексей (Киев, Украина) ( Falconist )
- betnik.rar (11 Кб)
Теги:
Falconist
Опубликована: 2010 г.
0
1
Вознаградить Я собрал 0 0
ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА УСИЛЕНИЯ ТРАНЗИСТОРА
В тех случаях, когда целью проверки является отбор лучших образцов триодов из данной партии, процесс испытания состоит в измерении обратного тока коллектора (рис. 1) и определении коэффициента усиления β (рис. 2). Коэффициент усиления по току транзистора, включенного по схеме, с общим эмиттером, находят по формуле
β = (R/U)Ik,
где — R сопротивление резистора, кОм, U — напряжение источника питания (например, батареи для карманного фонаря), В, I —ток коллектора, мА.
Величины и и обычно выбирают в пределах R = 5-90 кОм и U=1,5-9 В.
Для облегчения вычисления коэффициента β сопротивление резистора и напряжение источника питания и подбирают такими, чтобы их отношение было равно целому числу, кратному десяти, например, 10, 20, 30 и т.д.
При выборе величин R, Rогр и и учитывают то, что ток
Ik = β пр U(B) / R(кОм),
где β пр — предполагаемое максимальное значение β , не должен превышать допустимый для данного типа транзистора максимальный ток коллектора, а сопротивление резистора Rогр, ограничивающего ток через миллиамперметр в случае соединения коллектора с эмиттером, должно быть приблизительно равно U/7I0, где U — напряжение источника питания в вольтах, I0 — ток полного отклонения миллиамперметра в амперах.
При отсутствии миллиамперметра измерить коэффициент усиления β маломощного транзистора можно с помощью омметра. Выполняют это так.
Соединяют между собой проводники омметра и устанавливают стрелку прибора на нулевую отметку шкалы.
Затем собирают схему, приведенную на рис. 3,а, переводят ползунок переключателя в положение 3—1 и замечают первое показание омметра Ω1 . После этого переводят ползунок в положение 3—2 и устанавливают движок резистора R2 в такое положение, при котором показание омметра возрастает на 1000 Ом, то есть становится равным Ω1 + 1000.
Рис. 3. Схема соединения приборов при измерении коэффициента усиления по току β с помощью омметра
Выполнив эти измерения, отключают омметр, измеряют сопротивление резистора R2 и вычисляют искомую величину по приближенной формуле:
В тех случаях, когда проверке усилительной способности подвергается партия транзисторов, желательно упростить процесс измерения. Этого можно достичь, если ввести в участок 2—4 схемы второй резистор R1 (рис. 3,6).
В этом случае разность сопротивлений участков 2—4 и 1—4 равна (R2 + R1) — R1 = R2 и формула для вычисления β принимает простой вид:
β = 0,001 R2
Из последнего выражения нетрудно видеть, что схема рис. 3,б позволяет определять коэффициент усиления β путем простого считывания его со шкалы резистора R2. Для этого необходимо только отградуировать резистор в десятках килоом.
Простым и надежным способом проверки транзисторов, а также методом отбора лучших образцов из имеющихся партий триодов является испытание полупроводникового триода в макете какого-нибудь генератора. Если с вводом транзистора в схему и включением источника питания генератор сразу же начинает работать, то испытываемый транзистор считают исправным. О качестве его судят по показанию вольтметра переменного тока, присоединенного к коллектору-эмиттеру нижнего транзистора через конденсатор емкостью 4700-6800 пФ. Чем больше угол отклонения стрелки прибора, тем лучше проверяемый транзистор.
И, наконец, несколько слов о таком дефекте транзистора, как «плавание»
«Плавание» полупроводникового триода определяют наблюдением за стрелкой омметра, присоединенного к эмиттеру и коллектору проверяемого транзистора. Если стрелка не устанавливается против какой-нибудь отметки шкалы, а меняет свое положение, то триод считают «плывущим».
Как измерить коэффициент усиления транзистора по току?
Коэффициент hfe транзистора – это коэффициент усиления транзистора по току. Показывает во сколько раз ток коллектора больше тока базы. Для согласованной работы нескольких транзисторов в каскадах, их подбор часто начинают по коэффициенту усиления. Учитывая большой разброс параметров hfe, важно точно знать этот параметр у каждого транзистора.
Как измерить коэффициент усиления транзистора по току?
Коэффициент hfe маломощных транзисторов измеряется очень просто, для начала необходим мультиметр с возможностью измерения hfe, переводим прибор в необходимый режим измерения.
Затем, зная структура транзистора и его цоколевку, подключаем транзистор в специальное гнездо на панели мультиметра.
Важно! Необходимо правильно подсоединять транзистор, согласовывать выводы транзистора (Б-К-Э), с надписями на панели.
После подключения на дисплее появиться значение hfe. Если значение попадает в рамки указанные производителем, тогда такой транзистор можно считать рабочим.
Во многих мультиметрах контактные площадки посажены очень глубоко, это совсем не помеха для нового транзистора. Но как, же измерить коэффициент усиления по току транзистора, если он был выпаян с платы и имеет недостаточно длинные выводы? Для этого можно использовать несколько удлинительных проводов, и подключить транзистор отдельно от мультиметра.
Для наглядного теста произведена проверка hfe нескольких транзисторов, для двух разных типов: BC239 и КТ361Б.
BC239 n-p-n транзистор, с заявленным параметром hfe 120-800. Значение hfe колебалось от 555 до 563, в зависимости от конкретного транзистора.
КТ361Б p-n-p транзистор, с параметром hfe 50-350. Показания прибора составили 103-105.
Оба вида транзисторов показали незначительный разброс коэффициента усиления, что позволяет их использовать в необходимых целях. Как проверять другие параметры транзисторов, а также их работоспособность, мы расскажем вам позже.
Каталог статей и схем
В радиолюбительских условиях для проверки пригодности транзисторов не обязательно пользоваться мультиметром (типа М830…), имеющего режим измерения коэффициента усиления по току β. Такие приборы имеют очень неудобные гнезда для подключения выводов триода, но главное – неизвестны параметры, при которых транзистор тестируется (ток базы, напряжение и ток коллектора и др.).
В лучшем случае они стабилизированы по току базы или эмиттера при напряжении питания мультиметра (обычно 9 В) и не могут быть изменены при измерении разных типов транзисторов, их величины всегда постоянны. Между тем условия и данные заводских измерений, устанавливаемые ГОСТом, всегда приводятся в справочниках и даташитах для сравнения параметров транзисторов, их отбора и отбраковки. Причем в пределах разных классов, типов и групп условия измерения транзисторов тоже не всегда одинаковые…
Таким образом, сопоставление полученных при измерении результатов с табличными справочными данными становится неправомерным.
В любительских условиях вполне достаточно определить обратные токи коллекторного и эмиттерного переходов (Iкбо, Iэбо), начальный ток коллектора (Iк.н. или Iк), а также коэффициент усиления по току (β), включенного по схеме с общим эмиттером. Измерение обратного тока эмиттерного перехода (Iэбо) проводят, собрав схему по рис.1.
Рис.1
Коллекторная цепь при этом должна быть разомкнутая.
На рис.2 изображена схема для определения обратного тока коллекторного перехода (Iкбо).
Рис.2
При этом измерении цепь эмиттер-база должна быть разомкнутая.
Коэффициент усиления по току β транзистора, включенного по схеме с общим эмиттером (ОЭ), можно определить после измерений, проведенных по схеме на рис.3.
Рис.3
С помощью переменного резистора R устанавливают коллекторный ток Iк в несколько миллиампер и микроамперметром регистрируют значение тока базы I б. Коэффициент усиления транзистора по току приблизительно вычисляют по формуле:
Для определения β можно обойтись только одним миллиамперметром, подбирая сопротивление резистора R в цепи базы. Т.к. сопротивление перехода эмиттер-база ничтожное в сравнении и величиной сопротивления смещения R, ток базы определяется именно сопротивлением R:
где Uк (или Uкэ) напряжение батареи.
Измеряя ток коллектора Iк по схеме на рис.3 определяют коэффициент усиления транзистора β.
Если максимально ожидаемый коэффициент усиления транзистора (верхний предел измерения) βмакс., а наибольший коллекторный ток Iк.макс., то сопротивление смещения
R= βмакс. U / Iк.макс.
Например, мы имеем миллиамперметр на максимальный ток 50 мА (Iк.макс.=0,05 А). Пусть верхний предел измерения β макс.=500. Источником питания является батарейка на 1,5 В. Тогда сопротивление резистора будет R=500 х 1,5/0,05=15000 Ом.
При таком сопротивлении, понятно, шкала миллиамперметра будет представлять собой шкалу значений β до 500 и являться кратной ей, что, естественно, удобно.
Для измерения коэффициента усиления транзисторов по току транзисторов с n-p-n переходом в подобных приборах применяют коммутацию источника питания и измерительного прибора (реверс подключения). Такая схема приведена на рис.4. Сопротивление R1 здесь определяют так, как указано выше, а резистор R2 (шунт прибора) подбирают до расчетной величины:
R2=Rпр.Iпр./( I к.макс.- I пр.),
где Rпр. – сопротивление рамки измерительного прибора, а Iпр. – ток полного отклонения стрелки прибора.
Рис.4.
Описанный прибор имеет существенный недостаток. Дело в том, что коэффициент передачи тока при подключении транзистора по схеме с ОЭ h21e=Δ I к/Δ I б, и таким образом коэффициент передачи тока β в значительной степени зависит от режима работы транзистора, и в первую очередь от тока эмиттера (здесь Δ I к – изменение тока коллектора в зависимости от изменения тока базы Δ I б).
Коэффициент передачи тока h21e маломощных транзисторов обычно измеряют при токах эмиттера 0,5 мА (низкочастотные малошумящие), 1 мА (другие НЧ), 5 мА (ВЧ), 10 мА (для работы в импульсных режимах). Напряжение между коллектором и эмиттером при измерении этого параметра обычно равняется 5 В. При этом, параметр h21e очень слабо зависит от напряжения Uкэ и поэтому у маломощных транзисторов его можно измерять при неизменном значении. Упоминаемые токи в описанном приборе при измерениях однотипных транзисторов всегда будут отличаться. А это означает, что сопоставление полученных при измерении результатов с табличными справочными данными становится неправомерным.
Фото 1
В предлагаемом приборе эквивалентной схемой выбрана схема, представленная на рис.3. По шкале миллиамперметра считываются показания тока коллектора Iк при заданном токе базы I б (устанавливается резистором R по показаниям микроамперметра), и далее определяется β расчетом по формуле. Такая схема дает возможность при неизменном напряжении питания прибора (можно также подобрать необходимое) установить то значение тока базы, при котором приводятся справочные данные и, таким образом, иметь сопоставимые результаты измерений. А также промоделировать «поведение» транзистора при изменении тока базы.
Полная схема прибора приведена на рис.5.
В схему добавлена функция измерения еще одного важного параметра – Iкбо ( c екция переключателя S1.1). Введена возможность измерения параметров транзисторов с разными p — n переходами ( S 1.2). Защита при подключении испытуемого транзистора осуществляется путем замыкания цепи базы только в режиме измерения (кнопка SN 1 «Пуск»).
Еще одна функция – подключение внешних источника питания (желательно регулируемого) и измерителя Iк (разъем Х2). Это позволяет измерять транзисторы малой и большой мощности и даже тиристоры, выбирая напряжение источника питания (Uкэ) и считывать показания с более удобной, широкой шкалы стрелочного прибора или по цифровому миллиамперметру. Введенная в цепь коллектора в виде нагрузки лампочка La 1 при проверке транзисторов средней и большой мощности, тиристоров служит индикатором их исправности.
В качестве источника питания можно применить встроенный в прибор (внутренний) простейший выпрямитель (его схема не показана), собранный на трансформаторе от старого зарядного устройства сотового телефона, диодного моста типа КЦ407А, и интегрального стабилизатора на микросхеме 7805.
Можно питать прибор через внешний разъем Х2 от батареи или регулируемого источника. При этом включенные в обратном направлении диоды VD 1 и VD2 позволяют избежать их шунтирование элементами схемы внутреннего источника питания (ИП).
При компактном размещении элементов схемы прибора возможно влияние магнитного поля трансформатора ( в целях электробезопасности бестрансформаторные ИП применять нельзя! ) на чувствительную головку микроамперметра. В таком случае, кроме экранировки и (или) применения трансформатора на торе, можно питать прибор от зарядного устройства (ЗУ) сотового телефона, изготовленного на основе понижающего трансформатора. Такие ЗУ почти всегда имеют необходимые параметры: напряжение 4,7-5,6 В, ток 300мА >.
Оптимальным вариантом, конечно же, является применение регулируемого стабилизированного ИП.
Прибором можно проверять исправность тиристоров. Для этого тиристор подключают к зажимам разъема Х1: коллектор – к аноду, эмиттер – к катоду, база – к управляющему электроду проверяемого тиристора. Положения переключателя: S1.1 — измерение β, S1.2 – n- p — n , S 1.3 – мощный. Переключатель S2 – в зависимости от мощности тиристора в положении, например, 0,6 А. Регулятором «Ток базы» устанавливаем (повышаем) такой ток через управляющий электрод, при котором тиристор открывается – загорается лампочка-индикатор. Тиристор исправен.
В приборе в качестве S1 применяются многосекционные независимые переключатели типа П2К, собранные в линейку (как показано на фото).
Фото 2
Фото 3
Микроамперметр и миллиамперметр – любые (все зависит от габаритов корпуса и размеров измерительных головок. Например, как видно на фото, у автора установлена переделанная измерительная головка от старого магнитофона, шкала градуирована в мкА. Шунты – подобранные самодельные проволочные. В общем, при сборке прибора все зависит от возможностей и творческого подхода радиолюбителя.
Фото 4
Фото 5