Чем выше теплопроводность тем лучше или хуже
Перейти к содержимому

Чем выше теплопроводность тем лучше или хуже

  • автор:

Чем больше теплопроводность термопасты (Вт/мК) , тем лучше, или наоборот?

Чем больше теплопроводность термопасты (Вт/мК) , тем лучше, или наоборот?

Лучший ответ

Чем больше теплопроводность, тем лучше

Остальные ответы

тепло надо отводить по возможности эффективнее

Да, но тем её сложнее мазать, потому что она более густая

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Чем выше теплопроводность тем лучше или хуже

Перед тем, как приступим к подробному сравнению утеплителей, давайте изначально разберёмся, какие материалы для утепления являются наиболее востребованными в Украине. В числе наиболее популярных утеплителей широкого спектра применения числится минеральная вата, жидкая теплоизоляция, пенопласт, пеноизол, эковата и пенополиуретан (ППУ). У каждой компании и у частного владельца свое видение о том, какой утеплитель лучше. Но всё же стоит быть объективными. Поэтому предлагаем их сравнить по основным показателям.

Сравнение теплоизоляции по теплопроводности

Первой по значению характеристикой у теплоизоляционных материалов является именно теплопроводность. Данный показатель учитывает количество тепла, которое пропускает материал постоянно, а не за короткое время. Теплопроводность утеплителя показывает коэффициент, что измеряется в ваттах на квадратный метр. То есть, если мы видим значение 0.05 Вт/м*К, то это означает, что на 1 квадратном метре поверхности с нанесенной теплоизоляцией теплопотери будут составлять 0.05 Ватта. Следственно, чем выше коэффициент теплопроводности, тем хуже его теплоизоляционные свойства.

Теперь рассмотрим данные по нашим материалам и сведём всё в таблицу.

Таблица сравнения утеплителей по теплопроводности:

Теплоизоляционный материал Теплопроводность, Вт/м*К
Жидкая теплоизоляция Lic Ceramic 0.0025
Пенополиуретан 0.023-0.035
Пеноизол 0.028-0.034
Эковата 0.032-0.041
Пенопласт 0.036-0.041
Минеральная вата 0.037-0.048

Сравнение утеплителей по теплопроводности

Как видите, жидкая теплоизоляция занимает первое место по теплопроводности среди наиболее востребованных утеплителей широко спектра применения. И при этом значение превышает на порядок, чем у пенополиуретана. Последнее место в этой таблице у минеральной ваты.

Толщина теплоизоляционного материала очень важна при утеплении. И для каждой ситуации толщина рассчитывается индивидуально. Ведь на значение толщины теплоизоляции будут влиять ряд факторов. Среди них толщина стен, предназначение помещения и даже климатическая зона.

Ни для кого не станет секретом, что теплопроводность утеплителя зависит от плотности материала. И именно минеральная вата во всём этом проигрывает. Если плотность высокая, то значит воздуха в этом материале меньше. Проблема присутствия воздуха в теплоизоляционных материалах заключается в его высоком коэффициенте теплопроводности. К сведению, жидкая теплоизоляция Lic Ceramic содержит минимальное количество воздуха, так как в составе используются вакуумные керамические сферы.

Сравнение утеплителей по паропроницаемости

Такая характеристика, как паропроницаемость очень важна для утепления, так как она характеризирует то, как материал пропускает воздух и вместе с ним пар, что приводит к конденсату. Чем выше паропроницаемость, тем меньше конденсата.

Таблица паропроницаемости утеплителей

Теплоизоляционный материал Паропроницаемость, мг/м*ч*Па
Минеральная вата 0.49-0.6
Жидкая теплоизоляция Lic Ceramic 0.44
Эковата 0.3
Пеноизол 0.21-0.24
Пенопласт 0.03
Пенополиуретан 0.02

При сравнении мы видим, что наивысшая паропроницаемость у минеральной ваты и у жидкой теплоизоляции Lic Ceramic. Что касается полностью полимерных утеплителей, то значение этой характеристики у них очень низок. Поэтому, во многих случаях, когда люди утепляют дома пенопластом, то происходит эффект мокрой стены. В пространстве между стеной и пенопластом скапливается вода, а затем появляется грибок и чёрная плесень. А зимой вода замерзает и отталкивает от стены пенопласт, что нередко приводит к совершенно нулевому результату по утеплению. Что касается утепления изнутри пенопластом, то губительный эффект производит именно грибок и плесень, которые очень губительны для здоровья людей и животных.

Сравнение теплоизоляции по монтажу и эффективности во время эксплуатации

Монтаж очень важен для заказчиков. Ведь из-за того, как происходит монтаж теплоизоляции зависят денежные затраты и время. Самым простым материалом для нанесения является жидкая теплоизоляция. И к тому же именно по этой причине её выбирают многие покупатели, ведь наносить жидкую керамическую теплоизоляцию самостоятельно. Противоположностью по легкости монтажа является пенополиуретан. Для его нанесения нужно специальное оборудование. Также легко укладывается эковата на пол или для утепления чердака. А вот чтобы произвести напыление эковаты на стены мокрым способом требуется умение и специальные приспособления.

Что касается пенопласта, то он может укладываться на специально предустановленную обрешетку или же сразу на нужную поверхность. Приблизительно такая же ситуация с плитами из каменной ваты. Их укладывают для утепления вертикальных и горизонтальных поверхностей. А вот мягкая стекловата, та что в рулонах, должна укладываться лишь на обрешетку.

Через некоторое время после эксплуатации нанесенный теплоизоляционный материал может измениться. Ведь в зависимости от ряда характеристик он может впитывать влагу, давать усадку, в нём могут появиться грызуны, на него могут воздействовать инфракрасные лучи, вода и прочие элементы окружающей среды вплоть до агрессивных химических соединений. А наиболее невосприимчивой ко всему этому является жидкая керамическая теплоизоляция Lic Ceramic соответствующих модификаций.

Сравнение утеплителей на пожаробезопасность

Пожаробезопасность – это очень важный фактор для выбора теплоизоляционного материала. Особенно это важно, когда речь идёт об утеплении дымоходов, воздуховодов и котельных. Для такого назначения подойдёт только теплоизоляция, которая не поддерживает горение при любых температурах. И к таким материалам относится жидкая теплоизоляция на основе керамики и специально предусмотренная минеральная вата. Остальные материалы, что участвуют в нашем сравнении, поддерживают горение тем или иным образом. Для наглядности предлагаем изучить таблицу сравнения утеплителей по горючести:

Название теплоизоляции Группа горючести
Жидкая теплоизоляция Lic Ceramic Г1
Минеральная вата НГ-Г3
Пеноизол Г2-Г3
Пенополиуретан Г2-Г4
Эковата Г2-Г3
Пенопласт Г1-Г4

НГ – не горит;
Г1 — слабогорючий;
Г2 – умеренногорючий;
Г4 — сильногорючий.

Надеемся, наше сравнение теплоизоляции поможет в правильном выборе материала для утепления.

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

2019-02-27T21:46:57+03:00 20.03.2019 | Рубрики: Взгляд эксперта | Метки: Своя теплоизоляция |

Что такое коэффициент теплопроводности и для чего он нужен? Что значит «при 10 °С» или «при 100 °С»? Как правильно сравнить теплопроводность материалов. Первая статья Дмитрия Абрамова из серии «Своя теплоизоляция».

Что такое коэффициент теплопроводности

Точное определение коэффициента теплопроводности дано в своде правил СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов».

Коэффициент теплопроводности — количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице.
Из СП 61.13330.2012

Здесь использованы следующие понятия:

Коэффициент — относительная величина, определяющая свойство какого-нибудь процесса или устройства.

Теплопроводность — свойство передавать теплоту от нагретых участков к более холодным.

Изотермическая поверхность — поверхность, температура которой одинакова во всех точках.

Температурный градиент — перепад температур.

По сути, это расчетный коэффициент, который показывает, сколько тепла проводит материал. Коэффициент теплопроводности обозначается символом λ (лямбда).

Для чего нужен коэффициент теплопроводности

Когда вы видите, что коэффициент тепловодности одного материала при 10 °С равен 0,034 Вт/мК, а другого 0,036 Вт/мК, при тех же условиях. Что это означает?

Благодаря коэффициенту теплопроводности вы можете сравнить, какой материал передает больше теплоты, а какой меньше. Чем меньше теплопроводность материала, тем лучшими теплоизоляционными свойствами он обладает.

Для примера сравните коэффициент теплопроводности материалов ALMALEN при 10 °С с другими вспененными полиэтиленами. Он имеет наименьшую теплопроводность в своем классе: от 0,032 Вт/мК до 0,034 Вт/мК.

А если пойти дальше, то коэффициент теплопроводности даст понимание, как изменяется количество передаваемого тепла через один и тот же материал в зависимости от температуры на поверхности изолируемого объекта. Количество передаваемого материалом тепла за промежуток времени называется тепловым потоком.

Определение теплового потока дано в ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме».

Тепловой поток — количество теплоты, проходящее через образец в единицу времени.
Из ГОСТ 7076-99

Что значит λ10, λ20, λ100 и так далее

Подробно разобраться в вопросе помогут нормативные документы. Возьмем, например, ГОСТ 32025-2012 (EN ISO 8497:1996) «Тепловая изоляция. Метод определения характеристик теплопереноса в цилиндрах заводского изготовления при стационарном тепловом режиме». Согласно этому методу:

λ10 — это коэффициент теплопроводности, полученный в результате испытаний при среднеарифметическом значении температуры теплоизоляции 10 °С. Среднеарифметическое значение температуры теплоизоляции — сумма температур на изолируемой поверхности и внешней поверхности теплоизоляции, разделенная пополам.

λ100 означает, что испытания проведены при среднеарифметическом значении температуры теплоизоляции 100 °С.

Как правильно сравнивать коэффициент теплопроводности разных материалов

Существуют различные методы определения коэффициента теплопроводности. При сравнении материалов необходимо всегда обращать внимание на сопоставимость и применимость таких методов. То есть необходимо сравнивать коэффициенты теплопроводности, взятые при одной и той же температуре и определенные по одному и тому же стандарту.

Например, по ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме» обычно определяют коэффициент теплопроводности при 25 °С. В то же время большинство европейских стандартов, например EN 12667:2001, определяют коэффициент теплопроводности при 10 °С.

Коэффициент теплопроводности одного и того же материала, измеренный при меньшей температуре, будет всегда иметь меньшее значение и выглядеть якобы предпочтительнее.

Когда кто-то сравнивает различные материалы по непонятно каким коэффициентам теплопроводности — бегите от такого «специалиста». В лучшем случае вы потеряете время.

Понравилось? Поделись с друзьями!

5 комментариев

Василий 23.03.2019 в 08:29 — Ответить

В статье приводится определение «коэффициент теплопроводности» из СП 61, а по тексту «теплопроводность». Так как все таки правильно и о какой все же величине идёт речь? Коэффициент величина ведь безразмерная.. по логике. Да? Объясните, пожалуйста

Дмитрий Абрамов 23.03.2019 в 11:39 — Ответить

Коэффициент теплопроводности — величина размерная, показывающая количество теплоты переданное за единицу времени через единицу поверхности за единицу времени при разнице температур в один градус. Для линейного коэффициента теплопроводности через стенки, цилиндрические или плоские, которым стандартно оперируют в строительной теплофизике размерность выглядит в виде Вт/мС или Вт/мК, так как размерность градуса Цельсия и Кельвина одинаковая. Чем больше коэффициент теплопроводности тем интенсивнее тепловой поток через стенку (чтобы было понятнее через толщу материала) и тем больше теплопроводность этого материала. То есть — теплопроводность это свойство материала, а коэффициент теплопроводности характеристика этого свойства.

Александр 22.03.2019 в 07:55 — Ответить

В строительстве оперируют коэффициентами теплопроводности при реальных условиях: лямбда «а» и лямбда «б». Хотелось бы узнать, почему такие коэффициенты не применяют для технической изоляции.

Дмитрий Абрамов 22.03.2019 в 10:32 — Ответить

Коэффициенты теплопроводности по условиям эксплуатации “А” и “Б” подразумевает наличие постоянного увлажнения утеплителя в отопительный период в ограждающей конструкции за счёт диффузии водяного пара из помещения наружу. Объем диффузии зависит от типа помещения (сухой, влажный, мокрый), при этом, соответственно, два последних относятся к условиям эксплуатации “Б”. В технической изоляции другой подход, основанный на составе теплоизоляционного конструкции. При высоких температурах теплоносителя диффузии пара к трубе, конечно же нет. Поэтому в технической изоляции берут коэффициент теплопроводности при 25С (в некоторых случаях при 10С) и к этому коэффициент добавляют приращение по температуре, влажности, старению, умножают на коэффициент уплотнения и т.п. А при низких температурах теплоносителя, в летний период в частности, объем диффузии к поверхности трубы, гораздо больше, чем те, что рассматривают в стройконструкциях. Но это уже отдельная тема.

Павел Бахирев 22.03.2019 в 10:43 — Ответить

Диффузия — взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц. Диффузия водяного пара — проникновение водяного пара в материал при соприкосновении материала с воздухом. Приращение — величина, на которую что-либо увеличивается.

ПЛОТНОСТЬ УТЕПЛИТЕЛЕЙ: на что она влияет

Прежде чем выбрать утеплитель, особое внимание стоит обратить на его технические характеристики. Ведь от этого будет зависеть его теплопроводность и способность к снижению уровня теплопотерь в том, или ином помещении. Одной из таких важных характеристик является – ПЛОТНОСТЬ теплоизоляционного материала.

Виды утеплителей по уровню плотности

Стоит помнить, чем выше плотность теплоизоляционного материала, тем наибольшую нагрузку он оказывает на фундамент дома.

При этом следует отметить, что высокая плотность не всегда является гарантией высоких теплоизоляционных характеристик.

Поэтому, утеплитель делят на несколько видов, классификация которых осуществляется на основе плотности материал:

  • Особо легкие;
  • Легкие;
  • Средние;
  • Плотные (жесткие).

К особо легким утеплителям относится – пенополистерол (пенопласт), представляющий собой пористую структуру. Легкие утеплители изготавливаются на базе минеральной ваты. К утеплителям со средней плотностью относится пеностекло. А что касается плотных утеплителей, то они также изготавливаются путем использования минеральной ваты, процесс приготовления которых осуществляется под высоким давлением.

Легкие утеплители блокирует увеличение концентрации водяных паров, поэтому такой материал используют для утепления ненагружаемых поверхностей внутри помещений: стен, перегородок, перекрытий и т.д. Утеплители с легкой плотностью способны свести теплопотери к минимуму.

Плотные утеплители лучше всего использовать для наружной части стены. В этом случае, теплопроводность будет лучше. Такой материал хорошо переносит различные механические нагрузки и отлично противостоит неблагоприятному воздействию влаги.

Теплопроводность и плотность – как они связаны?

Достаточно сложно разобраться с тем, на что влияет плотность утеплителя, т.к. этот показатель практически не имеет никакого прямого воздействия на теплопроводность. В тоже время при выборе утеплителя, стоит обязательно учитывать плотность.

В любом теплоизоляционном материале – воздух, в обычном или же разряженном состоянии, является главным теплоизолятором. Чем больше содержится воздуха в теплоизоляционном материале, и чем он лучше изолирован от контакта с наружным воздухом, тем ниже будет коэффициент теплопроводности.

При сравнении пенополистирола и минеральной ваты, следует отметить их различную структуру. Пенопласт состоит из пенополистирольных шариков, заполненных воздухом. Поэтому изменение плотности в структуре пенопласта практически никак не влияет на уровень теплопроводности в этом материале.

Минеральная вата, состоит из переплетенных волокон, между которыми находится — воздух. Чем меньше плотность структуры этого материала, тем воздуха в нем будет больше, и тем самым, теплопроводность этого материала будет ниже. При более плотной структуре материала, теплопроводность будет выше, т.к. воздуха в нем содержится меньше.

Плотность и толщина утеплителя

Толщина и плотность утеплителя зависят друг от друга. Чтобы выбрать утеплитель нужной толщины, стоит учитывать минимальный уровень сопротивления теплопередачи окружающей конструкции. Например, для утепления перекрытий чердака и утепления стен эти показатели будут меняться. Из этого следует, что толщина теплоизоляционного материала зависит от его использования:

  • Для подвала – 6-15 см;
  • Для наружных стен – 8-10 см;
  • Для перекрытий чердака – 10-16 см;
  • Для кровли – 15-30 см и т.д.

А что касается плотности, то, чем плотнее утеплитель, тем наибольшую нагрузку он может нести. Поэтому, при выборе теплоизоляционного материала стоит учитывать все особенности помещения и здания, где будет применяться утеплитель. Например, минеральная вата, плотностью 35-40 кг/м3 применяется для утепления многоэтажных жилых зданий, а вот укладывать такой материал под стяжку или применять в слоистой кладке стен не рекомендуется, т.к. при укладке, стяжка раздавит минеральную вату, а в слоистой кладке – минвата со временем осядет. В таких случаях используют более плотный материал, он применяется для теплоизоляции производственных зданий: для стяжки пола применяется утеплитель плотностью – от 160 кг/м3, а для слоистой кладки стен – от 80 км/м3.

Чтобы определить, какая плотность теплоизоляционного материала лучше, следует учитывать немало факторов. При этом не стоит забывать, что показатели теплопроводности теплоизоляционных материалов примерно одинаковые, а вот транспортировка утеплителя с более высокой плотностью будет несколько осложнена.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *