Почему отгорает ноль, а не фаза
В том случае, если монтаж кабельных линий был выполнен правильно, отгорание ноля происходит из-за перегрузки нейтрали. Однако при равномерном распределении нагрузки ток в этом проводнике намного меньше, чем в фазных проводах, поэтому непонятно, почему отгорает ноль, а не фаза.
Что такое ноль
Питание большинства электроустановок и всех жилых районов осуществляется по четырёхпроводной трёхфазной схеме с трёмя фазными проводами и одним нейтральным.
Первоначально трёхфазные сети выполнялись по шестипроводной схеме с отдельным нулём для каждой фазы, позже отдельные нулевые провода были объединены в общую нейтраль и дано современное определение того, что такое ноль.
Особенностью трёхфазного электропитания является то, что все фазы сдвинуты относительно друг друга на 120°, благодаря чему токи в нейтральном проводе не складываются арифметически и, при одинаковой нагрузке в линейных проводах ток в нейтрали отсутствует.
Такая ситуация возможна только в теории, на практике по нулевому проводнику протекает уравнительный ток, который намного меньше линейных и служит для обеспечения равенства фазного напряжения.
При отгорании ноля и отсутствии такого тока напряжение в розетках, подключенных к разным фазам, распределяется обратно пропорционально мощности включённых электроприборов и может колебаться в диапазоне 0-380В.
Как поступает напряжение в квартиры
К многоквартирным домам и коттеджным посёлкам подходит 380В, а питание большинства бытовых электроприборов 220В. Для этого не требуются какие-либо преобразователи или трансформаторы. Дело в том, что оба этих напряжения присутствуют в трёхфазной электропроводке и носят название линейное и фазное.
Линейное напряжение 380В измеряется между двумя линиями или фазными проводами, а фазное 220В имеется между любой из фаз и нейтралью. Соотношение между ними определяется формулой Uл=√3Uф и для подачи в квартиру однофазного питания электропроводка подключается к одной из фаз и нейтрали.
Ток в нуле не равен нулю – правило Кирхгофа
Несмотря на то, что нейтральный провод называют нулём, в нем постоянно протекает уравнительный ток, однако он определяется не только величиной тока в фазных проводах, но и равномерностью распределения нагрузки.
Это связано с тем, что трёхфазная система описывается первым правилом Кирхгофа. Согласно этому закону алгебраическая сумма тока в подходящих проводах равна сумме токов в отходящих.
В данной схеме подходящими являются линейные проводники, а отходящий провод это ноль. Напряжение в разных фазах сдвинуты на 120°, поэтому их алгебраическая сумма при равенстве величины равно нулю.
На самом деле такая ситуация возможна только в лабораторных условиях. Отличаются напряжение в разных фазах и величина нагрузки. Кроме того, совпадение фазы между током и напряжением в одной линии возможно только при подключении к ней исключительно активной нагрузки — нагревателей и ламп накаливания.
Все остальные бытовые приборы в зависимости от своей конструкции и принципа работы сдвигают фазу тока относительно напряжения. В результате токи в разных фазах сдвинуты не на 120°, поэтому их алгебраическая сумма будет отличаться от идеальной и может достигать величины тока в фазных проводах.
Информация! В настоящее время сечение нейтрального проводника в кабельных линиях равно фазным, а четырёхжильные провода заменены пятижильными, в которых более тонкий провод является заземляющим. |
Почему отгорает именно ноль
Причина №1. Теоретически больших нагрузок на нейтрали нет, но оказывается, что ноль используется больше чем любая фаза, поэтому нулевой проводник работает больше их всех вместе взятых.
Это происходит потому, что жители приходят домой и включают нагрузку неравномерно (неодновременно). Например, житель первой квартиры пришёл и включил свет, электроплиту и чайники. В результате нагрузка по фазе А выросла. При этом ток идёт через фазу А и возвращается через ноль.
Потом хозяин выключил электроприборы и включил ЖК-телевизор, в результате ток в этой фазе уменьшился. В это время житель в квартире два нагрузил фазу В и ток снова пошёл по этой фазе к нейтрали, потом он решил отдохнуть и включает электроприборы житель квартиры три и нагружает фазу C и снова ноль.
В итоге получается, что фазы работают попеременно, нагреваясь и остывая по очереди. При этом ноль работает всё время, поэтому контакт этого проводника во вводном щите в здании просто не успевал остывать. Фазы нагревались и остывали, а контакты ноля грелись постоянно, поэтому он и перегорает.
Причина №2. Есть ещё конечно ряд нюансов, почему отгорает ноль, а не фаза. Например, в наших домах появилось много приборов, которые выдают в сеть повышенные гармоники.
Это способствует тому, что токи в нулевом проводе не складываются так, как положено для трёхфазной сети при сдвиге по фазе на 120°.
Из-за того, что гармоники имеют другую частоту, правильное сложение сдвинутых под разным углом фаз не происходит и ток в нулевом проводнике может быть больше, чем в фазных проводниках.
Вывод
Причиной того, почему отгорает ноль, а не фаза, является постоянная нагрузка этого проводника, в то время как фазы работают попеременно.
Кроме того, его загружают гармоники, образующиеся при работе импульсных блоков питания и отсутствие правильного сложения токов при наличии индуктивных и ёмкостных нагрузок (электродвигателей и электронных приборов).
И поскольку ноль больше нагружен, то он чаще выходит из строя. Для защиты проводов от перегрузки необходимо устанавливать автоматический выключатель, однако в большинстве домов в качестве вводного автомата используется трёхфазное устройство, через которое проходят только фазные провода, а нейтральный проводник остаётся без защиты, причём его сечение меньше, чем у линейных проводников.
Раньше такая схема была оправдана, но с появлением большого количества импульсных блоков питания необходимо модернизировать щитки и кабельные линии с учётом современных требований ПУЭ и других нормативных документов.
Что такое «Отгорание нуля» или обрыв нуля?
Наверняка каждый хоть раз в жизни слышал, а кто-нибудь даже и сталкивался лично с проблемой, когда в доме/квартире вдруг подскочило напряжение и сгорела техника. Из-за чего повышается напряжение до такого значения, что сгорает бытовая техника? Кого винить в происшествии?
Загадка резкого скачка напряжения кроется в таинственном понятии «отгорание нуля». Что такое «отгорание нуля» и почему именно «отгорание». Каждый знает из школьного курса физики и из окружающей нас бытовой жизни, что в электрической сети есть ноль и есть фаза. И тут многие зададутся вопросом: ну отгорел нуль – значит и розетка не будет работать, нуля ведь нет)). «Отгорание нуля» это профессиональный жаргон электриков, в электротехнике используется термин— обрыв нуля. Можно различить обрыв нуля полным, – это когда контакт с нулевой шиной полностью оборван, но часто встречается неполный контакт, что и вызывает эти самые скачки напряжения.
Так для чего же нужен нулевой проводник? Проводник нуль используется в наиболее распространенной трехфазной схеме «звезда», используемой для бытовых потребителей. Есть еще другая схема построения трехфазных сетей – «треугольник», у которой присутствуют три фазных проводника: А, В, С, но отсутствует четвертый проводник – нулевой. В основном схема «треугольник» используется в промышленных целях.
В схеме звезда используется четыре проводника три из которых фазные и один – нулевой. Таким образом, в многоквартирный дом приходят не два провода фаза и ноль, как некоторые могут думать, а четырехжильный или пятижильный провод (с защитным заземлением РЕ). Мощный силовой кабель заходит в водный распределительный щит. С этого щита электричество распределяется по подъездам, с подъезда по этажам, с этажей по квартирам. Как правило, в трехфазных схемах принято распределять мощности равномерно для обеспечения баланса работы трехфазной схемы. Например если в подъезде 30 квартир, и в каждую квартиру подводится электричество с напряжением 220В, распределение трех фаз будет таким: фаза А – 10 квартир, фаза В – 10 квартир, фаза С – 10 квартир.
В теории все сделано правильно, и подключение квартир обустроено правильно, но только вот работу чайников/кипятильников/кондиционеров и др. техники между соседями (между фазами) согласовать просто невозможно. Вот и получается так, что один стояк квартир (например 10 квартир на фазе А) может оказаться сильно загруженным, а другой стояк квартир (на фазе В) остается мало задействованным. В такой ситуации происходит дисбаланс (перекос по фазе) нагрузок в трехфазной схеме. В случае если ноль отгорел и на трех фазах нагрузка равномерная, например по 5 кВт на каждой фазе – то у каждого потребителя будет напряжение 220В до тех пор, пока один из потребителей не сделает перекос по мощности на своей фазе. В таком случае у этого потребителя в сети окажется напряжение 380В а на других фазах оно упадет до значений 20В-80В.
Поясним немного, что такое трехфазная схема звезда и как она работает. Переменные токи каждой фазы в трех одинаковых нагрузках сдвинуты по фазе ровно на одну треть и в идеале компенсируют друг друга, поэтому нагрузка в такой схеме называется трехфазной сосредоточенной нагрузкой. В средней точке напряжение равно нулю. При равномерной нагрузке трех фаз, например, работают трехфазные станки на заводе, потребление энергии одинаково по всем трем фазам. Нуль остается невостребованным, нет дисбаланса. В связи с чем, сечение нулевого проводника можно использовать гораздо меньше используемого по фазе. И вот в квартире используется одна фаза, а в целом по подъезду используется трехфазная схема, соответственно ноль в перекошенной по фазе системе является сильно нагружаемым элементом. Этот ноль находится в щитке на этаже в подъезде. Вот в этом месте он и может отгореть, но не обязательно! Отгорание обычно происходит в слабых местах, например, в плохо обжатом контакте или в неправильно подобранном сечении нулевого кабеля. Но что же все-таки произойдет, если отгорит нуль? В нормальных условиях напряжение в однофазной сети составляет 220 В – и называется фазным напряжением (измеряется между нулем и фазой). В квартиру это напряжение приходит по двум проводам. Когда в трехфазной схеме пропадает нуль (например в подъезде на щитке, где идет распределение фаз А,В и С по квартирам), то на тех концах, где было фазное напряжение (приходило в квартиру 220В) появляется линейное напряжение 380В. Линейное напряжение измеряется между фазами, например между фазой А и В и всегда составляет 380В.
Что делать, чтобы избежать ситуации с отгоранием нуля и как обезопасить себя от последствий обрыва нуля?
Наиболее общими рекомендации могут быть следующими:
- использовать сечение кабеля для соединения нуля в трехфазной схеме звезда не меньше, чем сечение кабеля для фазных напряжений;
- периодически, не реже одного раза в год, осуществлять аудит проводки и мест крепления и, по необходимости, переобжимать места соединения (заменять клеммные колодки, если это необходимо);
- использовать защитные реле, отключающие квартиру от электросети при повышении напряжения больше 250В;
- использовать стабилизаторы напряжения, т.к. стабилизаторы напряжения не только спасают от обрыва нуля (скачок напряжения), но и защищают технику от заниженного напряжения.
Для получения более расширенных рекомендаций, особенно в части использования трехфазных сетей в частных домах и коттеджах, и организации правильных схем электроснабжения – рекомендуем обращаться к профессионалам.
Почему греется нулевой провод
Нагрев нулевого провода может привести к его отгоранию и аварии в электросети. Чаще всего это происходит при неравномерном распределении нагрузок по фазам в трехфазной электросети и из-за плохого контакта. В этой статье мы расскажем почему греется нулевой провод и что делать в этой ситуации.
Ток в трёхфазной цепи
Чтобы причины нагрева нуля нужно понять, как работает трехфазная сеть. Нагрузка в трёхфазной сети может быть соединена звездой и треугольником, также могут быть соединены обмотки питающего трансформатора. У обмотки есть два вывода — конец и начало.
Если концы обмоток трехфазного трансформатора соединяются в одной точке — тогда говорят, что это схема соединения звездой. В точке их соединения (О), согласно законам Кирхгофа, ток будет всегда равен нулю, то есть перетекать от фазы к фазе. Если нагрузка в каждой из фаз (a, b, c) одинакова, то будут равны и напряжения на началах обмоток (A, B, C) как и ток в них. Что проиллюстрировано на векторной диаграмме ниже, где фазы токов и напряжений обозначены векторами и сдвинуты на треть периода друг относительно друга (120 градусов).
Симметричной называют такую трехфазную нагрузку, у которого сопротивление нагрузки (соответственно и потребляемый ток или мощность) каждой из трех фаз одинаково.
Но как только ток в фазах начинает отличаться, когда нагрузка по фазам отличается мощностью, то и напряжения на фазах начинают отличаться друг от друга. Это называется перекосом фаз.
Чтобы решить эту проблему к точке соединения звезды трансформатора подключают точку соединения звезды нагрузки. Это называется нейтраль, или нулевой провод, или просто ноль.
Электроснабжение в быту для чайников
Мы плавно подошли к практике, при подключении однофазных потребителей в трёхфазную сеть нагрузки зачастую неравны, то есть несимметричны.
Такое зачастую встречается в многоквартирных домах. В дом заводятся три фазы и ноль, в каждую квартиру заводится одна фаза и ноль. В одной квартире включён только холодильник и лампочка, в другой работает мощный электрообогреватель, а в третьей вообще ничего не включено. То есть нагрузки в фазах не одинаковы. В настоящее время часто в квартирах встречается и трёхфазный ввод, но ситуация от этого не изменяется.
В частных домах ситуация аналогична — на улице по опорам проходит трехфазная ЛЭП, а в дома заводится 1—3 фазы и ноль.
Что будет если ухудшится контакт в нулевом проводе или он отгорит? Перекос фаз и ток в нуле:
Всё-таки почему греется
В результате неравномерного распределения нагрузки по фазам в домах и квартирах по нулевому проводнику начинает протекать ток. Вы замечали, что в толстых 4 жильных кабеля 3 «фазных» жилы с одинаковой площадью поперечного сечения, а четвертая жила «нулевая» или «земляная» обычно тоньше?
Это как раз-таки связано с тем, что при симметричной нагрузке по ней вообще не будет протекать ток, а при не симметричной нагрузке ток должен быть меньше чем в фазной жиле. Но так бывает не всегда.
При нелинейных нагрузках, а также нагрузках, которые потребляют ток прерывисто (импульсные блоки питания, а они сейчас используются повсеместно) токи в фазах не компенсируют друг друга, к тому же они насыщаются различными гармоническими составляющими. Всё это является причиной того, что токи в точке соединения звезды просто не компенсируются и может оказаться так, что ток в нулевом проводе будет больше чем в фазном.
При протекании электрического тока проводник нагревается, это безупречная работа закона Джоуля-Ленца на практике. Он гласит, что чем больше сопротивление проводника и чем дольше протекает электрический ток, тем больше выделится тепла на нём.
Также вспомним, о том, что чем меньше сечение проводника и чем больше его длина, тем больше сопротивление. Кроме того, от качества контактов на соединении клемм и проводов также зависит переходное сопротивление. Простыми словами, чем больше площадь соприкосновения контактов и чем сильнее они прижаты друг к другу – тем меньше переходное сопротивление и тем меньше их нагрев.
В таком контакте как на рисунке ниже поверхности плоские, площадь будет равна площади наконечника, касающейся шайбы, плюс сопротивление самой шайбы и площадь её соприкосновения с медной шиной. Если все составляющие в хорошем состоянии, не имеют окислов и нагара – итоговое переходное сопротивление будет низким.
Если поверхности подгорели, окислены или ржавые, контакт получается таким как изображено на иллюстрации ниже. Здесь явно видно, что касания происходят в отдельных точках, а не по всей площади.
В клеммниках типа ВАГО и других пружинных клеммниках площадь касания пластины с круглой токопроводящей жилой достаточно маленькая, поэтому основная сфера применения таких клеммников — цепи с током 8-16 Ампер, за редкими случаями, когда клеммник конструктивно способен пропустить больший ток.
В винтовых клеммниках и шинах площадь контакта в большей степени определяется площадью винта, которым прижимается токопроводящая жила. Ниже вы видите клеммники в полиэтиленовой оболочке.
Внутри полиэтиленового корпуса расположена втулка из материала похожего на латунь и два винта. Из-за конструкции винтовыми клеммниками нельзя соединять голые многопроволочные провода. Их нужно лудить или обжимать наконечниками НШВИ.
Поэтому при аналогичном принципе действия клеммная колодки на карболитовом основании обеспечивают контакт лучше, за счет прижимной квадратной пластины-шайбы. Кроме того, вы можете сделать кольцо из провода и обернуть им винт или использовать наконечники типа НКИ.
Если вам интересны способы и средства для соединения проводов – пишите в комментариях и мы сделаем обзор всех видов с перечислением преимуществ и недостатков каждого из них.
Где греется
Почему греется ноль мы разобрались, а теперь давайте разберемся где это происходит чаще всего. В первую очередь ноль может отгореть в распределительном щите на вводе в здание. Это самая распространенная ситуация, потому что в этом месте на нулевой провод ложится нагрузка со всех квартир и со всех трёх фаз.
Далее часто возникают проблемы на нулевой шине в подъездном электрощите. Если шины вообще есть, и не подсоединено как на фотографии ниже.
Часто шина закреплена непосредственно на корпусе подъездного электрощита, тогда это выглядит так как показано ниже.
В клеммниках автоматических выключателей греется ноль, вплоть до обугливания частей его корпуса.
Если у вас старая электропроводка и установлены пробки с предохранителями или автоматические пробки, то обратите внимание как на винтовые клеммники, так и на сам цоколь пробки. Резьба и центральный контакт могут окисляться и подгорать, что проиллюстрировано на рисунке ниже.
Общие шины очень часто подвержены проблеме подгорания нуля. Это связано с их устройством и соблюдением правил работы с ними. Винтовой способ подключения проводников, хоть и безусловно удобен, но такие контакты нужно хотя бы изредка ревизировать – зачищать и протягивать, иначе вы получите то что изображено на рисунке ниже.
А в нормальном состоянии она должна выглядеть так:
Решение проблем вызванных нагревом простое — зачистить контакты, проводники и заново протянуть. Если клеммник был сильно перегрет — заменить его, если провод грелся в автомате, возможно автомат тоже нужно будет заменить!
Что происходит дальше и как избежать последствий?
По мере нагрева начинает подгорать и ухудшаться контакт. Ослабевают винтовые зажимы в связи с тепловым расширением и последующим охлаждение после снятия нагрузки. Это вызывает лавинообразный процесс роста сопротивления и нагрева соединения. В результате ноль рано или поздно отгорает полностью. При этом внешне может казаться что он всё еще находится в клеммнике, а фактически все прилегающие поверхности будут покрыты слоем окислов и нагара.
После чего происходит то явление о котором мы говорили в начале статьи – перекос фаз.
О том что ноль скоро отгорит можно косвенно судить по участившимся просадкам и возрастаниям напряжения, особенно если у вас выполнен трёхфазный ввод и установлены вольтметры или реле напряжения и индикацией величины напряжения в сети. Если напряжения постоянно стабильны (или отклонения несущественны) – у вас всё впорядке с проводкой.
При перекосе фаз нагрузка, в нашем случае частные дома или квартиры оказываются включенными последовательно на 380 Вольт. Напряжения распределятся согласно закону Ома – там где будет включена бОльшая нагрузка – напряжение просядет (сопротивление нагрузки маленькое), а в той квартире где включен минимум электроприборов напряжение повысится (сопротивление нагрузки высокое).
Последствием перекоса фаз в лучшем случае будет отгорание проводников на вводе, выбивание автомата и прочее. В худшем случае из-за возросшего тока может оплавиться изоляция электропроводки и произойти возгорание.
Чтобы обезопасить своё жильё от последствий отгорания нуля рекомендуем установить реле контроля напряжения, а еще лучше в паре с УЗИП. Стабилизатор напряжения на вводе в квартиру в этой ситуации может не решить проблему и сам выйти из строя.
Схему подключения реле напряжения вы видите ниже.
В качестве таких устройств мы можем порекомендовать популярные модели:
- УЗМ-50Ц (комбинированное устройство с функцией вольт-амперметра);
- Digitop VA-32 (недорогой, но надёжный вариант, модель может отличаться в зависимости от номинального тока);
- РН-106.
- Как подключить двигатель от стиральной машины к электрической сети 220 В
- Распространенные ошибки при монтаже проводки в гофре
- Примеры применения токовых клещей на практике
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Секреты электрика
Подписывайтесь на наш канал в Telegram: Домашняя электрика
Поделитесь этой статьей с друзьями:
Обрыв нуля: что это, почему происходит и какие способы защиты есть
Электроэнергия подаётся к потребителю по линейным кабелям. Нулевой проводник (нейтраль) используется в электросети для возврата тока от потребителя обратно к генерирующей станции. Нейтраль в нормальном состоянии выступает в роли защиты и не имеет напряжения.
От генераторной станции электроэнергия передаётся потребителю по трёхфазной сети. Она состоит из трёх проводников с рабочим напряжением, а также нулевого и заземляющего проводников. Пара рабочих проводников имеют между собой напряжение 380 В, которое называют линейным. Рабочий проводник и ноль в паре имеют напряжение 220 В – фазное.
При помощи ноля также происходит саморегулирование нагрузки в трёхфазной сети. При неравномерной нагрузке на фазах излишек тока сбрасывается на нейтраль и система автоматически уравновешивается.
К чему приводит обрыв нулевого провода, какие виды обрыва бывают?
Если нулевой проводник выступает в роли защиты, почему же его обрыв опасен? Для ответа на этот вопрос рассмотрим ситуацию обрыва в трёхфазной и однофазной сетях.
Обрыв нуля в трехфазной сети
Трёхфазная сеть построена таким образом, что электрический ток идёт по рабочему проводнику к потребителю и уходит в нейтраль. Напряжение в нормальной ситуации между ними 220 В. В случае, когда ноль отключен, потребители будут подключены по схеме «звезда без нулевой магистрали». Это значит, что каждый потребитель получит не фазное стабильное напряжение в 220 В, а «гуляющее» от 0 до 380 В линейное. Это происходит из-за перекоса фаз, т.е. неравномерной нагрузки на разных фазах.
Как пример, возьмём три квартиры, которые подключены к разным фазам. Жильцы первой квартиры находятся дома и используют стиральную машину, электрическую печь и другие электроприборы. Во второй квартире никто не живёт, поэтому все приборы отключены от сети. В третьей же все ушли на работу, оставив в режиме ожидания некоторую технику. В случае обрыва нуля, в квартире № 1 техника прекратит работу или будет работать со сбоями, т.к. напряжение просядет до 50. 100 В, а в квартире № 3 подключенные приборы получат 300. 350 В и выйдут из строя, возможен пожар. Квартира № 2 не пострадает, т.к. вся техника отключена.
Это случается потому, что при обрыве нейтрали (в ситуации с большим суммарным сопротивлением) получается большее напряжение, которое и провоцирует выход из строя техники.
Обрыв нуля в однофазной сети
В однофазной сети обрыв нейтрали опасен для человека. Это можно объяснить тем, что в розетке появляется опасный потенциал там, где был ноль. Особенно опасна эта ситуация в системах с заземлением TN-C, т.к. используется совмещенный нулевой и заземляющий проводник PEN. Поэтому при обрыве провода, на открытых неизолированных частях корпуса электроприборов появляется потенциал опасный для жизни человека.
Причины обрыва нулевого провода
Основными причинами обрыва нейтрали является изношенность электросетей и непрофессионализм некоторых горе-электриков, которые допускают монтаж проводки, не придерживаясь необходимых правил. Не доверяйте непрофессионалам!
Как найти обрыв нуля?
Для того чтобы найти обрыв нейтрали в квартире нужно осмотреть все подключения в щитке. Увидеть и устранить такую проблему не сложно. Другое дело если провод перегорел где-то в стене. Для поиска поврежденного участка под отделкой необходимо использовать специальные тестеры.
Если же нулевой провод перегорел на стояке в подъезде, то эту проблему должны решать электрики со специальной службы. Задача владельца квартиры – обеспечить электробезопасность собственного жилья.
Какая есть защита от обрыва нуля?
Для защиты людей и техники от последствий обрыва нуля необходимо использовать на входном щите специальные защитные приборы: реле напряжения, УЗО или дифавтомат. Реле напряжения поможет уберечь технику от перепадов напряжения. УЗО и дифатомат сработают при утечке тока, что защитит человека от опасного удара электричеством.
Компания DC Electronics является производителем реле напряжения ZUBR, которые помогут защититься от последствий не только обрыва нуля, но и других аварийных ситуаций в электросетях.
Широкий ассортимент выпускаемых реле позволяет выбрать прибор с рабочим током от 16 до 63 А, мощностью до 13900 ВА. Для удобства установки устройства выполнены в разных формфакторах: под DIN-рейку или для установки непосредственно в розетку.
В любой модели есть функция задержки на включение после срабатывания, что позволяет уберечь технику от повторных скачков напряжения. Использование алгоритма True RMS обеспечивает большую точность измерения.
Также следует отметить высокую пожаробезопасность реле ZUBR. Все устройства изготовлены из поликарбоната, который не поддерживает горение. Большинство приборов имеют дополнительную термозащиту, которая отключит питание в случае нагрева реле свыше установленных показателей температуры. После остывания прибор включится снова. Это убережет жилье от возможного возгорания.
При производстве реле ZUBR используются комплектующие таких производителей как EPCOS, Samsung, HTC и пр. Это обеспечивает высокую надёжность и долговечность устройств. Компания DC Electronics предоставляет 5 лет гарантии на реле ZUBR.
Заключение
Обрыв нуля это серьёзная аварийная ситуация, которая может повлечь за собой ряд негативных последствий, как для техники, так и для самого человека. Установка реле напряжения в автоматическом режиме отключит питание в случае аварии, что поможет сохранить технику и избежать возгорания при перенапряжении. В комплекте с другими защитными устройствами этот прибор поможет обеспечить максимальную защиту вашего дома от различных нештатных ситуаций в электрической сети.