Направление обхода контура как определить
Перейти к содержимому

Направление обхода контура как определить

  • автор:

Направление обхода контура как определить

Соединения резисторов и источников в сложных цепях не всегда можно свести к совокупности последовательного и параллельного их соединений. Для расчётов сложных цепей удобно применять правила Кирхгофа.

Узлом электрической цепи будем называть точку, где сходятся не менее трёх проводников. Токи, подходящие к узлу, будем считать положительными, а выходящие из узла – отрицательными. Узел – это не обкладки конденсатора, где может происходить существенное накопление заряда. Отсюда следует первое правило Кирхгофа:

первое правило Кирхгофа

алгебраическая сумма токов в узле равна нулю.

Участок цепи между двумя узлами называется ветвью. Возьмём в сложной цепи произвольный замкнутый контур, состоящий из отдельных ветвей. Выберем направление обхода контура по часовой стрелке или против. ЭДС в каждой ветви контура будем считать положительной, если направление её действия совпадает с выбранным направлением обхода контура, а в противном случае – отрицательной. Падение напряжения (произведение тока на сопротивление) в любой ветви контура будем считать положительным, если направление тока в этой ветви совпадает с направлением обхода контура, в противном случае – отрицательным. Записав для каждой ветви контура уравнение закона Ома для участка цепи, содержащего ЭДС, и сложив все уравнения, получим второе правило Кирхгофа:

второе правило Кирхгофа

в произвольном замкнутом контуре любой электрической цепи сумма падений напряжений во всех ветвях контура равна алгебраической сумме ЭДС во всех ветвях контура.

Оба правила Кирхгофа справедливы не только для постоянных во времени значений всех величин, входящих в соответствующие уравнения, но и для их мгновенных значений.

При составлении уравнений по правилам Кирхгофа нужно придерживаться следующих рекомендаций. Если в цепи содержится n n узлов, то по первому правилу Кирхгофа можно составить только n – 1 n–1 независимых уравнений. При составлении уравнений по второму правилу Кирхгофа надо следить, чтобы в каждом новом контуре была хотя бы одна ранее не использованная ветвь. Отступление от этих рекомендаций приводит к появлению уравнений, являющихся следствием системы ранее составленных уравнений. В процессе решения такой «переполненной» системы может возникнуть тождество 0 = 0 0=0 , что приводит в замешательство решающего из-за «исчезновения» неизвестных системы.

Задача 18.1

Рис. 18.1

В схеме на рис. 18.1 E 1 = 4,2 <\mathcal E>_1=4,2 B, E 2 = 3,8 <\mathcal E>_2=3,8 B, R 1 = R 2 = 10 R_1=R_2=10 Ом, R 3 = 45 R_3=45 Ом. Найти силу и направление тока во всех участках цепи. Считать, что внутренние сопротивления источников вошли в R 1 R_1 , и R 2 R_2 .

Зададим направления токов произвольно, например так, как показано на рис. 18.1.
Для нахождения трёх неизвестных токов надо составить три независимых уравнения. В схеме n = 2 n=2 узла. По первому правилу Кирхгофа составляем n — 1 = 1 n-1=1 уравнение. Для узла `C`:

I 1 — I 2 + I 3 = 0 I_1-I_2+I_3=0 .

Недостающие два уравнения составляем по второму правилу Кирхгофа для контуров `ABCA` и `ABCDA`:

I 1 R 1 — I 3 R 3 = E 1 I_1R_1-I_3R_3=<\mathcal E>_1 , I 1 R 1 + I 2 R 2 = E 1 — E 2 I_1R_1+I_2R_2=<\mathcal E>_1-<\mathcal E>_2 .

Решение системы полученных трёх уравнений в общем виде трудоёмко и даёт громоздкие выражения для токов. Систему удобно решать, подставив в неё значения ЭДС и сопротивлений:

I 1 — I 2 + I 3 = 0 I_1-I_2+I_3=0 , 10 I 1 — 45 I 2 = 4,2 10I_1-45I_2=4,2 , 10 I 1 + 10 I 2 = 0,4 10I_1+10I_2=0,4 .

Решая систему последний трёх уравнений, находим:

I 1 = 0,06 I_1=0,06 A, I 2 = — 0,02 I_2=-0,02 A, I 3 = — 0,08 I_3=-0,08 A.

Отрицательные значения токов I 2 I_2 и I 3 I_3 говорят о том, что истинные направления этих токов противоположны указанным на рис. 18.1.

Направление обхода контура как определить

Основные определения, термины
и понятия по военно-технической подготовке

  • Военно-техническая подготовка
  • Тактитка зенитных ракетных войск
  • Боевое применение зенитного ракетного комплекса

1.2. Постоянный ток

1.2.1. Законы Ома.

Закон Ома — эмпирический физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника.

В своей оригинальной форме он был записан его автором в виде :

 X\! = <a \over <b+l></p>
<p>>.\qquad(1)» width=»152″ height=»38″ /> ,</p>
<p>где <em>X</em> — показания гальванометра, т.е в современных обозначениях сила тока <em>I</em> ;</p><div class='code-block code-block-4' style='margin: 8px 0; clear: both;'>
<!-- 4961 -->
<script src=

a — величина, характеризующая свойства источника напряжения, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) ;

l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R ;

b — параметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока r .

В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает

Закон Ома для полной цепи :

I\! = <\varepsilon\! \over <R+r></p>
<p>>, \qquad(2)» width=»158″ height=»38″ /> ,</p><div class='code-block code-block-5' style='margin: 8px 0; clear: both;'>
<!-- 5961 -->
<script src=

где ε — ЭДС источника напряжения;

I — сила тока в цепи;

R — сопротивление всех внешних элементов цепи;

r — внутреннее сопротивление источника напряжения.

Из закона Ома для полной цепи вытекают следствия:

  • При r сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения
  • При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.

,

где есть напряжение, или падение напряжения (или, что то же, разность потенциалов между началом и концом участка проводника), тоже называют «Законом Ома».

Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:

 <\varepsilon\!></p>
<p> = Ir + IR = U(r) + U (R). \qquad(4) » width=»305″ height=»21″ /> ,</p>
<p>То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему <em>замкнутой</em> цепи. В таком случае оно всегда меньше ЭДС.</p>
<p>К другой записи формулы (3), а именно:</p><div class='code-block code-block-7' style='margin: 8px 0; clear: both;'>
<!-- 7961 -->
<script src=

I\! = <U \over R></p>
<p> \qquad(5) » width=»116″ height=»41″ /> ,</p>
<p>применима другая формулировка:</p>
<p> <strong> <em>Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна <br /></em> электрическому сопротивлению данного участка цепи.</strong> </p>
<p>Выражение (5) можно переписать в виде:</p>
<p><img decoding=

, \qquad(6) » width=»136″ height=»21″ /> ,

где коэффициент пропорциональности G назван проводимость или электропроводность. Изначально единицей измерения проводимости был «обратный Ом» — Mо, в Международной системе единиц (СИ) единицей измерения проводимости является сименс (русское обозначение: См; международное: S ), величина которого равна обратному Ому.

Рис 1. Схема, иллюстрирующая три составляющие закона Ома.

https://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Ohm%27s_law_triangle.PNG/200px-Ohm%27s_law_triangle.PNG

Рис 2. Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления

1.2.2. Правила Кирхгофа.

Правила Кирхгофа (часто, в литературе, называются не совсем корректно Законы Кирхгофа, название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного(«почти стационарного») тока.

Для формулировки правил Кирхгофа вводятся понятия узел , ветвь и контур электрической цепи.

Ветвью называют любой двухполюсник, входящий в цепь.

Узлом называют точку соединения трех и более ветвей.

Контур — замкнутый цикл из ветвей. Термин замкнутый цикл означает, что, начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что ветвь и узел могут принадлежать одновременно нескольким контурам.

В терминах данных определений правила Кирхгофа формулируются следующим образом.

Первое правило .

Первое правило Кирхгофа гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла — отрицательным: Алгебраическая сумма токов, направленных к узлу равна сумме направленных от узла.

\sum\limits^n_<j=1></p>
<p>I_j=0.» width=»85″ height=»50″ /> .</p>
<p>Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.</p>
<p> <strong>Второе правило</strong> <strong>.</strong> </p>
<p>Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:</p>
<p><img decoding=

для постоянных напряжений: E_k= \sum^m_U_k=\sum^m_R_kI_k;» width=»229″ height=»49″ />

\sum^n_</p>
<p>для переменных напряжений: e_k= \sum^m_u_k=\sum^m_R_ki_k+\sum^m_u_+\sum^m_u_.» width=»390″ height=»49″ /></p>
<p>Это правило вытекает из 3-го уравнения Максвелла, в частном случае стационарного магнитного поля.</p>
<p>Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура. При этом падение напряжения на ветви считают положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, и отрицательным — в противном случае.</p>
<p>Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.</p>
<p> <strong>Особенности составления уравнений для расчёта токов и напряжений</strong> <strong>.</strong> </p><div class='code-block code-block-12' style='margin: 8px 0; clear: both;'>
<!-- 12961f -->
<script src=

Если цепь содержит p узлов, то она описывается p — 1 уравнениями токов. Это правило может применяться и для других физических явлений (к примеру, система трубопроводов жидкости или газа с насосами), где выполняется закон сохранения частиц среды и потока этих частиц.

Если цепь содержит m ветвей, из которых содержат источники тока ветви в количестве m i , то она описывается m m i – ( p — 1) уравнениями напряжений.