РЕЗОНА́НС
РЕЗОНА́НС (франц. resonance, от лат. resono – откликаться), избирательный отклик колебат. системы на внешнее периодич. воздействие определённой частоты. Явление Р. происходит при приближении частоты внешнего воздействия ω к частоте собств. колебаний системы ω 0 и заключается в резком возрастании амплитуды её вынужденных колебаний. В этом случае частота воздействия называется резонансной ( ω р). Её величина определяется свойствами колебат. системы. Впервые Р. описан Г. Галилеем для механич. систем. От Р. при внешнем воздействии следует отличать параметрический резонанс , возникающий при периодич. изменении параметров колебат. системы.
Резонанс
При заданных возмущающей силе Fmax.возм и коэффициенте трения β амплитуда Ym является функцией только угловой частоты возмущающей силы.
На рисунке показана зависимость Ym от ω (резонансная кривая). Параметром служит коэффициент затухания δ.
При ω ≈ ω0 она достигает особенно большого значения (резонанс).
При самых малых значениях δ величина Ym резко возрастает.
Если δ > 0 , то в случае резонанса ω < ω0; величина Ymax.ст представляет собой статическое отклонение системы под действием постоянной силы Ymax.возм (ω = 0 ).
Для определения резонансной частоты необходимо найти максимум функции Ym = Ym(ω) и приравнять первую производную нулю; тогда, если
ωрез | резонансная частота, при которой амплитуда максимальна, | радиан/сек |
---|---|---|
ω0 | частота собственных незатухающих колебаний системы, | радиан/сек |
m | масса колебательной системы, | кг |
β | коэффициентом вязкого трения, | кг/сек |
δ | коэффициентом затухания, | радиан/сек |
Частота резонанса
\[ ω_ <рез>= \sqrt^2 — \frac> = \sqrt^2 — 2δ^2> \]рез>
Резонансная частота ωрез несколько меньше частоты ω собственных колебаний системы с затуханием.
Условие отсутствия резонанса
\[ δ \geqslant \frac<ω_>> \]ω_
При условии (2) явление резонанса совершенно исчезает. В этом случае при любой частоте возмущающей силы амплитуда колебаний меньше статического отклонения.
Амплитуда резонанса
Чтобы найти величину амплитуды в резонансном случае, нужно подставить формулу (1) в формулу отклонения при вынужденных колебаниях.
Ymax.рез | резонансная амплитуда колебаний системы, | метр |
---|---|---|
Fmax.возм | максимальное значение возмущающей силы, | Ньютон |
m | масса колебательной системы, | кг |
ωрез | резонансная частота, при которой амплитуда максимальна, | радиан/сек |
ω0 | частота собственных незатухающих колебаний системы, | радиан/сек |
ω | частота колебаний системы с затуханием, | радиан/сек |
β | коэффициентом вязкого трения, | кг/сек |
δ | коэффициентом затухания, | радиан/сек |
\[ Y_m = \frac < F_
Согласно формуле, разность фаз α также зависит от частоты возмущающей силы. Параметром служит коэффициент δ.
На рисунке представлена зависимость α от частоты.
Независимо от величины затухания при ω = ω0 разность фаз составляет
Резонанс играет большую роль в технике и в повседневной жизни. В большинстве механических устройств под действием внешних периодических сил могут возникать колебания. При резонансе происходит нарастание амплитуды колебаний, и это может привести к разрушениям («резонансная катастрофа»). В случае вращательного движения резонансную частоту называют критическим числом оборотов.
Чтобы предотвратить возникновение колебаний со слишком большой амплитудой следует:
— по возможности устранять периодически действующие силы,
— добиваться большой разности собственной частоты и частоты возбуждающей силы,
— добиваться того, чтобы частота принимала резонансное значение лишь на время, меньшее одного периода колебаний,
— применять демпфирующие элементы.
На какой частоте наступает резонанс
Колебательный контур является типичным представителем резонансных колебательных систем, играющих важную роль в большинстве разделов физики — в механике это различного типа маятники и звуковые резонаторы (струны, мембраны, трубы, свистки, органы), в электродинамике — колебательные контуры, закрытые и открытые резонаторы с распределенными параметрами, в оптике — лазерные резонаторы, эталоны Фабри — Перо и т.д. Принципы описания всех колебательных систем настолько общи, что теория колебаний стала самостоятельным разделом физики. Поэтому изучение параметров, свойств и характеристик колебательного контура полезно рассматривать как общее введение в мир резонансных колебательных систем.
В теории колебаний выделяются два класса явлений — явления в линейных и нелинейных колебательных системах. Линейными называются такие системы, параметры которых не зависят от амплитуды колебаний. Например, для маятников это означает такие малые колебания, при которых упругость пружин и стержней не зависит от амплитуды колебания, а натяжение нити подвеса определяется только гравитационными силами. Для электрических колебательных контуров независимыми от амплитуды токов и напряжений должны оставаться такие величины, как индуктивность $L$, емкость $C$ и сопротивление $R$.
Резонансные системы имеют два важных свойства.
Свойство избирательно реагировать на внешние источники сигналов, выделяя только те из них, частоты которых совпадают с собственной частотой колебательной системы.
Свойство запасать энергию колебаний, возбужденных внешним источником, поддерживая колебания в течение определенного времени после выключения внешнего источника.
Колебательный контур характеризуется двумя основными параметрами: частотой собственных (резонансных) колебаний $\omega _ $ и добротностью $Q$, характеризующей отношение мощности энергии собственного колебания к мощности потерь за период.
На рис. 18 приведены примеры «параллелей» электрических и механических колебательных систем. В электрических резонаторах происходит периодический переход электрической энергии, запасенной в конденсаторе $(W_Э =\frac 12 CU^2),$ в магнитную энергию катушки индуктивности $(W_M =\frac 12 LI^2)$ и обратно. В маятниках происходит аналогичный циклический переход энергии из потенциальной (поднятого груза или сжатой пружины) в кинетическую и обратно.
Свободные колебания происходят в замкнутой цепи без вынуждающей силы (рис. 19,а). Согласно второму закону Кирхгофа для такой цепи можно написать: $$ R\cdot I+U_ =-L\cdot \frac. $$ Выражая $U_ $ через заряд $q$, получим уравнение
$$ R\cdot I+L\cdot \frac +\frac =0 \ \ \ \mbox < (СИ). >$$ Дифференцируя по времени и учитывая равенство $I=\frac $, получаем $$ L\frac I> > +R\frac +\frac =0 \ \ \ \mbox < (СИ). >$$ Разделив на $L$ и вводя обозначения $\delta =\frac $ и $\omega _^ =\frac $, получим общее уравнение для свободных колебаний линейной резонансной системы: $$ I»+2\delta \, I’+\omega _^ I=0, $$ где параметр $\delta $ называется затухание, а параметр $\omega _ $ — собственная частота, или частота свободных колебаний. Оно решается подстановкой $I=A\cdot e^ $, которая приводит к характеристическому уравнению $$ -\omega ^ +2i\omega \, \delta +\omega _^ =0, $$ с решением $$ \lambda \, _ =i\, \delta \pm \sqrt<\omega _^ -\delta ^ > . $$ Общее решение имеет две составляющие $$ I=A\cdot e^ +B\cdot e^ . $$ Константы $A$ и $B$ определяются начальными данными задачи, например, зарядом $q_ $ или напряжением на конденсаторе $U_ $. Характер начальных данных определяется конкретной физической системой.
Частный пример схемы для возбуждения свободных колебаний в колебательном контуре приведен на рис. 19,б. Конденсатор $C$ заряжается от батареи до напряжения $U_ $ (положение «а» переключателя), а затем переключается в точку «б». Свободные колебания будут представлять собой циклический переход энергии электрического поля (в конденсаторе) в энергию магнитного поля (в индуктивности) и обратно.
Подставив найденные значения $A$ и $B$, получим общее решение для свободных колебаний в контуре $$ I=i\frac >
Если бы колебательный контур состоял только из идеальных (без потерь) реактивных элементов (индуктивности $L$ и емкости $C$), то переход энергии из электрической в магнитную и обратно совершался бы без потерь, а в контуре существовали бы незатухающие свободные колебания с собственной частотой $\omega _ =2\pi \, f=\sqrt>.$
Наличие в схеме активного элемента $R$ приводит к тому, что часть энергии за каждый период переходит в тепло и колебания затухают с некоторой постоянной времени $\tau $. Роль частоты в уравнении теперь играет величина $\omega _
=\sqrt<\omega _<0>^ -\delta ^ > $, зависящая от отношения реактивной мощности к потерям на активном сопротивлении $R$. При этом вовсе не обязательно в схему должен быть включен отдельный резистор. В его качестве может выступать, например, омическое сопротивление провода, которым намотана катушка индуктивности, а также сопротивление утечки изоляторов конденсатора. Кроме того, часть энергии колебаний может излучаться контуром в окружающее пространство в виде электромагнитной волны. На этом основано действие так называемых связанных контуров: если вблизи данного колебательного контура расположен другой, то в нем «наводятся» (возникают) колебания за счет того, что часть энергии трансформируется из первого контура во второй. Передача энергии совершается переменным электромагнитным полем, возникающим вокруг первого контура.
Если затухание мало, т. е. $\delta <\omega _$, то мы получаем уравнение слабо затухающих колебаний в виде $$ I=-\frac >
t=-I_ e^ \sin \omega _
t. $$ При этом резонансная частота приближается к частоте собственных колебаний: $$ \omega _
=\sqrt<\omega _^ -\delta ^ > \approx \omega _ \left(1-\frac \frac <\delta ^><\omega _^ > \right). $$ Таким образом, при малом затухании резонансная частота практически совпадает с собственной, однако колебания при этом не являются гармоническими. Для гармонических колебаний должно соблюдаться условие $I\left(t\right)=I\left(t+T\right)$, где $T$ — период колебания. В нашем случае $I\left(t\right)\ne I\left(t+T\right)$, и о периоде можно говорить лишь как о времени, через которое повторяются нули функции (рис. 20). Именно в этом смысле мы будем ниже использовать термин «период колебаний».
Введем понятия добротности $Q$ и логарифмического декремента затухания $\gamma $ контура. Из отношение амплитуд $n$–того и $(n + k)$–го колебаний равно $I_ I_^ = e^$, где $T=2\, \pi \omega ^ $ — период колебания («повторения нулей»). Логарифмическим декрементом затухания $\gamma $ называется величина $$ \gamma =\delta \, T=\frac \ln \frac
Добротность контура $Q$ определяется соотношением $$ Q=\frac <\omega _<0>L> =\frac <\omega _<0>CR> =\frac, $$ где $\rho =\sqrt $ (СИ). Физический смысл добротности заключается в отношении запасенной в контуре энергии к энергии потерь за период колебания $$ Q=\omega \cdot \frac, $$ откуда можно найти связь добротности с другими параметрами контура $$ Q=\frac<\pi > <\gamma >=\frac<\pi > =\frac<\omega > =\omega \frac \ \ \ \mbox < (СИ).>$$
Экспериментально добротность определяется по резонансной кривой как отношение резонансной частоты $\omega _
$ к полосе частот $2\cdot \Delta \omega $, определяемой на уровне $U_ =\pm \frac>$: $$ Q=\frac<\omega _<з>> =\frac> , $$ где $U_
$ — амплитуда колебания на резонансной частоте контура. Величина $\rho =\sqrt$ называется характеристическим (волновым) сопротивлением контура.
При большом затухании, т.е. при $\delta >\omega _ $, величина $\omega _^ -\delta ^ $ отрицательна, корень из нее мнимый. Такой случай называется апериодическим процессом. Общее решение, аналогичное, полученному ранее, будет иметь вид $$ I=-\frac
Вынужденные колебания
Колебательный контур, рассмотренный в предыдущем разделе, представлял собой замкнутую электрическую цепь, в которой совершаются свободные колебания.
В случае вынужденных колебаний мы должны подводить к контуру электрическую энергию от внешнего источника (генератора). Есть много способов для подключения источника внешней энергии к контуру, которые сводятся к той или иной комбинации двух основных: в разрыв цепи контура (рис. 22, а) или параллельно емкостной и индуктивной ветвям контура (рис. 22,б). В зависимости от способа включения различают соответственно последовательный (рис. 22,а) и параллельный (рис. 22,б) колебательные контуры. Они предъявляют разные требования к согласованию с генератором и нагрузкой. Поэтому нужно отличать собственные параметры контура от параметров нагруженного контура, получаемые с учетом влияния генератора и «нагрузки» (входного сопротивления той цепи, в которую включен контур). В параллельном контуре (рис. 22,б) возникает резонанс токов. Для его поддержания в качестве вынуждающей силы необходимо применение генератора стабильного тока. В последовательном контуре (рис. 22,а) имеет место резонанс напряжений, и для его поддержания должен применяться внешний генератор стабильного напряжения.
Вынужденные колебания в последовательном контуре, резонанс напряжений
Закон Кирхгофа, позволяющий исследовать процессы в контуре (рис. 22,а) в зависимости от частоты, записывается в виде $$ U=U_ +U_ +U_ =IR+iI(\omega L-\frac <\omega C>)=I\cdot Z. $$ Контур представляет для генератора некоторое комплексное сопротивление $$ Z=R_L +i\cdot (\omega L-\frac <\omega C>), $$ $$ \left|Z\right| = \sqrt
Из последнего выражения видно, что сопротивление цепи будет минимально и равно активному сопротивлению $R_ $ на некоторой частоте $\omega _ $, определяемой условием $$ \omega _0 L=\frac <\omega _0 C>, \ \ \ \mbox < где >\ \ \ \omega _ =\frac> \ \ \ \mbox < (СИ).>$$ Таким образом, на резонансной частоте сопротивление контура минимально, чисто активно, а ток в цепи совпадает по фазе с входным напряжением (напряжением генератора). Фактически это и есть определение резонанса в последовательном колебательном контуре.
Для практических целей представляет интерес исследовать поведение напряжений на реактивных элементах контура в зависимости от частоты генератора и определить его добротность $Q$.
Поскольку фазы $U_ $ и $U_ $ независимо от частоты всегда сдвинуты относительно тока $I$ на $+$ и $-90^$ соответственно, то достаточно исследовать зависимость от частоты их модулей. Это можно сделать исходя из уравнений $$ U_ =IR, \ \ U_ =I\omega L, \ \ U_ =\frac<\omega C>, \ \ I=\frac . $$
Для примера раскроем уравнения для $I$ и $U_ $. Используя введенное для свободных колебаний понятие добротности $Q=\left(\omega _ RC\right)^$, получим следующее выражение для тока в последовательном контуре: $$ I=\frac +(\omega L-\frac <\omega C>)^ > > =\frac \frac <\sqrt<1+Q^(\frac<\omega > <\omega _> -\frac <\omega _> <\omega >)^ > > . $$ Тогда напряжение на индуктивности будет равно $$ U_ =\omega LI=U\frac <\omega _> > <\sqrt<1+Q^(\frac<\omega > <\omega _> -\frac <\omega _> <\omega >)^ > > . $$
Аналогичное уравнение можно получить для напряжения на $C$. При $\omega =\omega _ $ напряжения на $L$ и $C$ будут равны $U_ =U_ =Q\cdot U$, т.е. в $Q$ раз больше напряжения вынуждающей эдс.
На самом деле максимумы напряжения на элементах $L$ и $C$ несколько выше и смещены от резонансной частоты и выражаются следующими соотношениями: $$ \omega _
При добротности контура $Q \ge 10$ сдвиг частот максимумов $U_ $ и $U_ $ относительно резонансной частоты $\omega _ $ не превышает 1% и экспериментально резонансную частоту и добротность можно определять по резонансной кривой любого из напряжений $U_ $ и $U_ $. Напряжение на реактивных элементах $U_ $ и $U_ $ при $\omega =\omega _ $ в $Q$ раз больше, чем входное напряжение $U$, поэтому резонанс в последовательном контуре называется резонансом напряжений.
Важно отметить, что для нашего анализа существенно, что само входное напряжение $U$ от частоты не зависит. В противном случае все параметры зависели бы не только от самого контура, но и от параметров источника сигнала. Как было показано в предыдущем параграфе, для этого выходное сопротивление генератора должно быть много меньше $R$.
Вынужденные колебания в параллельном контуре, резонанс токов
Схема подключения параллельного контура представлена на рис. 21,б. Из–за комплексного характера нагрузки ток генератора является комплексной величиной. Поэтому модуль тока $I$ может оказаться меньше не только суммы модулей токов индуктивной и емкостной ветвей контура, но и каждого из них в отдельности. Именно это и происходит при резонансе в параллельном контуре: токи в индуктивной и емкостной ветвях контура в $Q$ раз больше, чем ток, потребляемый от генератора тока. Поэтому резонанс в параллельном контуре называется резонансом токов.
Комплексное сопротивление параллельного контура равно $$ Z=\frac Z_ > +Z_ > = \frac <(R_
Мы пренебрегли величиной $R_ $ в числителе, поскольку она в $Q$ раз меньше индуктивного сопротивления, но этого нельзя делать в знаменателе, поскольку при резонансе величина в скобках стремится к нулю.
Условие резонанса для параллельного контура то же, что и для последовательного — равенство реактивных сопротивлений ветвей с $L$ и $C$: $$ \omega _ L=\frac <\omega _C>, \ \ \mbox < где >\ \ \omega _ =\frac > \ \ \mbox < (СИ). >$$ Таким образом, при резонансе сопротивление контура становится чисто активным и равным $$ R_ =\frac < C R_> =\frac >
Сопротивление $R_ $ отдельного физического эквивалента в контуре не имеет, а является комбинацией волнового сопротивления $\rho $ и сопротивления потерь $R_ $. Поэтому оно не составляет отдельной ветви параллельного контура и не ответвляет в себя ток. Следовательно, «переносить» его куда–либо или к чему–нибудь «подсоединять» (например, к внутреннему сопротивлению источника тока) бессмысленно. На схеме это просто условное обозначение того факта, что на резонансной частоте параллельный колебательный контур представляет для внешнего генератора некоторое чисто активное сопротивление величиной $R_ $, а в формулах символическая запись определенной комбинации $\rho $ и $R_ $, даваемой последней формулой.
Добротность параллельного контура $$ Q=\frac <\omega _L> > =\frac \omega _ C> =\frac > =R_ \sqrt > . $$
Собственные параметры параллельного контура, т.е. резонансная частота $\omega _ $ и добротность $Q$ будут такими же, как и в последовательном контуре при тех же $C$, $L$ и $R_.$
Резонанс напряжений и резонанс токов
В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.
Резонанс напряжений
Резонанс напряжений возникает в последовательной RLC-цепи.
Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.
При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.
С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.
Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту
Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.
Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.
Резонанс токов
Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.
Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.
Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.
Выразим резонансную частоту
Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.
Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.