Нрн и рнр транзистор как открываются
Перейти к содержимому

Нрн и рнр транзистор как открываются

  • автор:

Транзисторы: ​принцип работы, схема включения, чем отличаются ​биполярные и полевые

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

TO-92 — компактный, для небольших нагрузок
TO-220AB — массивный, хорошо рассеивающий тепло, для больших нагрузок

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять

База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его

Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

Сток (drain) — на него подаётся высокое напряжение, которым хочется управлять

Затвор (gate) — на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

Исток (source) — через него проходит ток со стока, когда транзистор «открыт»

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

$ R = \frac<U - U_d></p>
<p> = \frac <5\unit- 0.3\unit><0.04\unit<А>> \approx 118\unit $» /></p><div class='code-block code-block-7' style='margin: 8px 0; clear: both;'>
<!-- 7961 -->
<script src=

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

$ R = \frac<U - U_d></p>
<p> = \frac <5\unit- 0.3\unit><0.001\unit<А>> = 4700\unit = 4.7\unit $» /></p>
<p>Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.</p><div class='code-block code-block-8' style='margin: 8px 0; clear: both;'>
<!-- 8961 -->
<script src=

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Если не указано иное, содержимое этой вики предоставляется на условиях следующей лицензии: CC Attribution-Noncommercial-Share Alike 4.0 International

Производные работы должны содержать ссылку на http://wiki.amperka.ru, как на первоисточник, непосредственно перед содержимым работы.
Вики работает на суперском движке DokuWiki.

схемотехника/транзисторы.txt · Последние изменения: 2022/06/07 10:11 — mik

Инструменты страницы

  • Показать исходный текст
  • История страницы
  • Ссылки сюда
  • Наверх

Нрн и рнр транзистор как открываются

Биполярные транзисторы имеют по 2 p-n полупроводниковых перехода. Эти переходы могут комбинироваться как p-n-p и n-p-n. Напомним, здесь n от слова negative, а p — positive.

Точнее n — отрицательная (электронная) проводимость материала из которого сделан полупроводник p — дырочная (положительная) проводимость. На стыке двух материалов образуется p-n переход или электронно-дырочный переход. Электрический ток через p-n переход может протекать только в одном направлении, от p к n.

Вернёмся к транзисторам. Существуют транзисторы с прямой (p-n-p) и обратной (n-p-n) проводимостью.

 Транзисторы n-p-n и p-n-p

Рис. 1. Условное схематическое изображение транзисторов n-p-n (Q1) и p-n-p (Q2).

P-n-p транзисторы открываются током базы направленным от эмиттера к базе. То есть чтобы открыть транзистор, необходимо подать на базу отрицательное по отношению к эмиттеру напряжение.

N-p-n транзисторы открываются током базы направленным от базы к эмиттеру. То есть чтобы открыть транзистор, необходимо подать на базу положительное по отношению к эмиттеру напряжение.

Транзистор является усилительным прибором. Малым током базы можно управлять большим током коллектора. Усилительные свойства транзистора характеризуются коэффициентом передачи по току. У большинства современных биполярных транзисторов коэффициент передачи по току достигает нескольких сотен единиц.

Биполярные транзисторы выпускают рассчитанными на разную мощность и в различных типах корпусов. При макетировании маломощные транзисторы, чаще всего, используют в корпусе типа TO-92.

Транзистор TO-92

Рис. Транзистор в корпусе TO-92

Ниже в таблице приводим цоколёвку некоторых транзисторов в корпусе TO-92.

Транзистор T 1 2 3 h21э Ikmax Ukemax Fmax MHz
2N2222 О Э Б К 290 0,6 30 250
2N3904 О Э Б К 260 0,2 40 300
2N3906 П Э Б К 260 0,2 40 250
BC337 О К Б Э 315 0,8 45 100
BC327 П К Б Э 250-630 0,8 45 100
BC547 О К Б Э 385 0,5 45 300
BC557 П К Б Э 480 0,2 45 100
MJE13002 O Б К Э 8-40 1,5 300 10
SS8050 О Э Б К 250 1,5 25 100

Табл. 1. Цоколёвка некоторых транзисторов в корпусе TO-92

В таблице 1 буквы обозначают Э — эмиттер, Б — база, К — коллектор. в колонке Т обозначен тип транзистора О (обратной проводимости, n-p-n), П (прямой проводимости, p-n-p). h21э статический коэффициент усиления тока в схеме с общим эмиттером. Ikmax максимально допустимый ток коллектора. Ukemax максимально допустимое напряжение эмиттер коллектор Fmax граничная рабочая частота.

  • Вы здесь:
  • Главная
  • Робототехника
  • Транзисторы p-n-p и n-p-n
  • tic-tac-toe 2024
  • Логотип школы 548
  • tic-tac-toe 2023
  • if else
  • Функция switch case
  • Тернарный оператор
  • Плата ESP32 Lite
  • Быки и коровы на С++
  • while Игра кто быстрее 2023
  • Функция yield()
  • Пуговица и бусина
  • Linux или FreeBSD 2023
  • Сокеты
  • Арифметические и унарные операции
  • Коробка 3х3
  • Пазлы
  • Сапёр 2023 ООП
  • Пятнадцать 2023
  • Что ест уж 2023
  • Игровое поле 2023
  • Быки и коровы 2023
  • Термины и определения
  • Программа SOS
  • Arduino Blink
  • Китайский волчёк
  • Головоломка Куб дяди Мити
  • Головоломка Ханойская башня
  • Головоломка Клёцки
  • Головоломка Чайный сервиз
  • Головоломка Тетраэдр
  • Головоломка Что ест уж
  • Головоломка косой Узел
  • FreeCAD корпус для Orange Pi 3 LTS
  • FreeCad корпус для Raspberry
  • Решето Эратосфена
  • ESP8266 tty терминал
  • Blender отверстия
  • Raspberry Pi Pico в Arduino IDE
  • MicroPython на Raspberry Pi Pico
  • Blink для ESP-C3-13-Kit на MicroPython
  • MicroPython MicroREPL
  • MicroPython WebREPL
  • Драйвер для CH340 в Ubuntu 22.04
  • MicroPython для ESP
  • MicroPython и GPIO
  • Робот на ESP8266 с датчиком HC-SR04
  • Задача 001
  • Esp8266 и HC-SR04
  • ESP8266, драйвер MX1508 и сервопривод
  • FORTH на Arduino
  • Извлекаем слова из Flash памяти
  • Матричная клавиатура
  • Игра Flip-Flop
  • Lines98 v2
  • Логические операции
  • Операции сравнения
  • Esp8266 управление через web-интерфейс
  • Игра 2048
  • Битовые операции
  • Игра PyNetWalk
  • Энкодер
  • Игра-головоломка Чайный сервиз v2
  • Flip-flop 2x2x5 v2
  • Игра Сапёр v2023 на Python
  • Игра Flip-Flop v3
  • Lines98
  • Микрофон
  • Калькулятор v3
  • Где ест уж v3
  • Транзистор и фоторезистор.
  • Датчик препятствий
  • Игровое поле из Button
  • Игра Memory
  • Датчик инфракрасных импульсов
  • Типы C++
  • 3-D модель катушки ротора
  • ESP32-C3 Wi-Fi точка доступа
  • ESP32-C3 FTM
  • ESP32-C3 Sigma-Delta модуляция
  • Установка Arduino IDE для ESP32-C3
  • ESP32-C3 analogReadMilliVolts
  • ESP32-C3 Serial.print
  • ledcWriteNote для ESP-C3-Kit
  • Плата ESP-C3-32S Kit
  • ШИМ в ESP-C3 Kit
  • Программа Blink для ESP-C3 Kit
  • Подключение ESP-C3-Kit к Arduino IDE
  • Плата ESP-C3-13 Kit
  • Калькулятор с tkinter
  • Драйвер моторов MX1508
  • Калькулятор на Arduino
  • Raspberry Pi Pico Python SDK
  • Raspberry Pi Pico C/C++ SDK
  • Программирование на MMBASIC
  • PicoMiteVGA
  • Сервопривод и Ардуино
  • Arduino машина с ИК управлением
  • Двигатель постоянного тока
  • ИК пульт ДУ
  • Ультразвуковой дальномер HC-SR04
  • АЦП и ШИМ в Arduino
  • Крестики нолики v2.0
  • Программа для музыкальной шкатулки
  • Ханойские башни, игра
  • Flip-Flop 4×4 и ООП
  • AT90S2013 с внешним генератором
  • Игра Кто быстрее
  • Игра головоломка Peg
  • Поход в пустыню
  • Оригинальная игра Сапёр
  • Программирование ATtiny861
  • Программирование AT90S2013
  • StringVar или ООП
  • Клеточный автомат Конвея
  • Flip-Flop 4×4 .
  • ООП, after() функция задержки в tkinter
  • Программирование AtTiny 13, 45, 85
  • Игра-головоломка Где ест уж
  • Игра-головоломка Чайный сервиз
  • Пишем игру Flip-Flop v2
  • Игра Быки и коровы на Python v2
  • Крестики нолики
  • Python сортировка
  • Игра Красный или Синий?
  • Индикатор 788BS
  • Python Факториал
  • Генератор псевдослучайных чисел
  • Датчик температуры в ATtiny88
  • Serial порт в ATtiny88
  • Пишем библиотеку для MAX7219 и LED матрицы
  • MAX7219 и Arduino
  • Прерывания PCINT в Arduino
  • Функция sleep() в Arduino для ATtiny88
  • ATtiny88 datasheet на русском
  • Фьюзы ATtiny88
  • Arduino Fading and Blink
  • Алгоритм Евклида. Нахождение НОД
  • Python Числа Фибоначчи
  • Python Tkinter игра Пикассо и Модильяни
  • Ищем программатор для STM 32F030F4P6
  • Python Tkinter игра Раскраска
  • Пишем игру Быки и Коровы на Python
  • Головоломка Ханойские башни на Python
  • Головоломка Ханойские башни на Си
  • Пишем игру Сапёр на Python
  • Raspberry Pi Pico fading.py
  • LCD МТ-16S2H и LiquidCrystal_74HC595
  • EasyEDA для инженеров-электронщиков
  • LCD МТ-16S2H и LiquidCrystalRus
  • Raspberry Pi Pico и MicroPython
  • Пишем игру пятнашки на Python
  • Пишем игру на Python
  • ESP8266 версии плат
  • Регистр К155ИР13
  • Linux или FreeBSD
  • Триггеры
  • Счетчик импульсов на 7493
  • Счетчик импульсов на D-триггерах
  • Цифровые индикаторы с общим катодом
  • ATtiny88 программируем в Arduino IDE
  • Конденсатор в кружке Робототехника
  • Генератор на 555-м таймере
  • Генератор НЧ на LM358
  • Tkinter виджеты
  • Pydoc в Python
  • LM358 управление голосом
  • Несимметричный мультивибратор
  • QX5252F схема включения
  • DC-DC uk преобразователь на QX5252
  • DC-DC преобразователь на QX5252
  • Python с Pygame обработка столкновений
  • Логика в Python
  • Сова на телевизор
  • Транзисторы p-n-p и n-p-n
  • IDLE
  • Thonny установка и настройка
  • Timer/Counter1 ATmega328
  • Arduino IDE
  • ATMEGA8
  • Прерывания по таймерам в Arduino
  • DC-DC преобразователь
  • LED лампа светодиодная
  • MOSFET
  • Концепция музыкальной программы для Arduino
  • Стробоскоп на 555-м таймере
  • ШИМ на 555-м таймере
  • ШИМ управление мощностью нагрузки
  • Вентилятор для CPU и Arduino
  • ATmega328P
  • Храним константы в Flash-памяти программ
  • Храним константы в EEPROM
  • Создание функций
  • Цикл for в Arduino
  • Драйвер MAX7219 и светодиодная матрица 8х8
  • WS2811 и RGB светодиод
  • Assembler в Arduino
  • Python Gtk игра Раскраска
  • LGT8F328P в Arduino IDE
  • Адрес i2c
  • Музыкальная шкатулка
  • LCD 1602 i2c и Arduino
  • Корпус VESA для Orange Pi PC 2
  • Blink для адресуемых RGB светодиодов
  • ESP8266-01 Web-сервер
  • ESP8266 прошивка AT-espressif
  • Edragon, ESP firmware
  • Esptool
  • ESP8266 в Arduino IDE
  • ESP8266-01 подключение USB-UART
  • ESP8266-01 AT интерпретатор
  • CuteCom монитор порта
  • ESP8266-01 подключение
  • SSD1306 IIC print()
  • ATMega328 в Arduino без кварца
  • Фьюзы в Arduino UNO
  • Программирование Arduino Pro Mini
  • L7805 стабилизатор напряжения
  • MLX90614 — ИК термометр
  • Датчик ИК импульсов
  • Arduino-Hava Nagila
  • Arduino-Финская полька
  • Arduino-Гимн РФ
  • Arduino-Григ В пещере Горного Короля
  • heaptrack профилировщик памяти
  • Консольная программа на Visual J#
  • Консольная программа на C#
  • Консольная программа на Visual Basic.NET
  • Blender на русском
  • Arduino Digispark ATTiny85
  • cairo.Context object Деформации
  • cairo.Context object Фигуры Лиссажу
  • cairo.Context object Движение по криволинейной траектории
  • cairo.Context object Пинг-понг по стенкам
  • cairo.Context object Загружаем картинку
  • cairo.Context object Трансформация прямоугольных координат
  • cairo.Context object Штриховые линии
  • cairo.Context object Шар с радиальной заливкой
  • cairo.Context object Градиентная заливка
  • cairo.Context object Сдвигаем и вращаем начало координат
  • cairo.Context object Начало координат
  • cairo.Context object Сглаживание контура изображения или шрифта
  • cairo.Context object Углы соединения линий
  • cairo.Context object Рисуем линии
  • Gtk Drawin Area и GObject
  • Gtk Drawin Area и PangoCairo
  • Python Gtk окно с текстом
  • Python Gtk игра Flip-Flop
  • Python Gtk Крестики — нолики
  • Anjuta Gtk Python Кнопка
  • Visual Studio Code редактор
  • Vala язык программирования
  • Anjuta Gtk Python
  • Glade Gtk Python сигналы
  • Glade Gtk Python
  • Python графическая библиотека Turtle
  • Python графическая библиотека GTK
  • Python графическая библиотека Tkinter
  • Инкубатор
  • Пример программы на Python с библиотекой Pygame
  • Создание игр на Python с Pygame
  • Классическая игра Жизнь
  • Игра Жизнь на дисплее SSD1306 и Arduino
  • SSD1306 Display
  • Импульсный регулятор мощности на Ардуино
  • Оператор switch case. Электронная игра на Arduino.
  • Игра инверсия
  • Android пишем программу на C++
  • Цикл while. Алгоритм Евклида.
  • Geany пишем программу на C++
  • Как скомпилировать cpp под Linux
  • Схема преобразователя напряжения на транзисторе
  • Схема фонарика с 2-мя батарейками
  • Author Login
  • Карта сайта

© 2024 Системный интегратор

Что такое транзисторы. Обучающее видео

В своих обучающих роликах мы уже прошли пассивные компоненты и немного затронули активную часть электроники. Прошлый выпуск был о диодах — советуем посмотреть, если вы еще не видели. А сегодняшний выпуск будет о короле всей микропроцессорной техники, совершившем революцию в приборостроении — транзисторе. Предлагаем присоединиться к изучению.

Транзистор — наверное, самый важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

Работа транзистора похожа на работу водопроводного крана. Только вместо воды – электрический ток. Возможны три состояния транзистора – рабочее (транзистор открыт), состояние покоя (транзистор закрыт) и полуоткрытое состояние — в нем транзистор работает в усилительном режиме. Приоткрывая или призакрывая кран, мы регулируем мощность потока воды. Другими словами: это электронная кнопка, которая нажимается не пальцем, а подачей напряжения.

Бывают как большие, таки и очень маленькие транзисторы. Например, центральные процессоры компьютеров или телефонов внутри состоят из взаимодействующих между собой транзисторов размером с десяток нанометров. Популярный в мобильных устройствах процессор Snapdragon 835 скрывает в себе 3 миллиарда транзисторов размерами в 10 нм каждый! (для сравнения — размеры бактерий в среднем составляют 50-500 нм).

Существуют биполярные и полевые транзисторы. Разберем, в чем между ними разница.

Биполярные транзисторы

Биполярные транзисторы имеют три контакта:

  • Коллектор — на него подаётся высокое напряжение, которым хочется управлять
  • База — через неё подаётся небольшой ток, чтобы разблокировать большой, то есть открыть «кран»
  • Эмиттер — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Чтобы транзистор пропускал через себя ток, ему на базу ПОСТОЯННО должен подаваться небольшой сигнал. Как только сигнал прекратится, транзистор закроется.

Основная характеристика биполярного транзистора — показатель усиления hfe, или gain. Он показывает, во сколько раз пропускаемый через транзистор ток может быть больше, чем маленький ток, идущий через базу.

Например, Если hfe = 100, и к базе проходит ток 1 мА, то транзистор пропустит через себя максимум в сто раз больший ток — 100 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только ограниченные 10 мА. На этом принципе можно сделать стабилизацию тока в схеме.

Также транзисторы имеют максимально допустимые напряжения и токи на контактах. Превышение этих величин грозит чрезмерным нагревом и разрушением транзистора.

NPN и PNP типы

Описанный ранее транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. То есть внутри транзистора получаются два P-N перехода, такие же, как в диодах. NPN-транзистор пропускает через себя ток, когда ему на базу подаются положительные заряды.

PNP-транзисторы отличаются «перевёрнутым» поведением: ток свободно протекает, если базу подключить к минусу питания, то есть заземлить. Когда через базу идёт ток, сам транзистор закрывается.

На схемах такие транзисторы отличаются направлением стрелки. Стрелка всегда указывает от P к N.

P-N переход внутри транзистора — это диод, который обладает свойственным падением напряжения, около 0.5 Вольта. То есть после транзистора напряжение будет немного меньше, чем до него. Этого недостатка лишены полевые транзисторы.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (транзисторы с изолированным затвором).

Полевые транзисторы тоже обладают тремя контактами:

  • Сток (drain) — на него подаётся высокое напряжение, которым хочется управлять
  • Затвор (gate) — на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.
  • Исток (source) — через него проходит ток со стока, когда транзистор «открыт»

От биполярных транзисторов они отличаются двумя особенностями: управление «краном» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Так происходит, потому что затвор вместе со стоком образует конденсатор. После того, как мы подали на затвор сигнал и конденсатор зарядился, ему больше не нужно постоянное поддержание сигнала. Если отключить сигнал и просто оставить такой полевой транзистор как есть, он может быть открытым сам по себе еще очень долгое время.

Полевым транзистор называется, потому что тот самый внутренний конденсатор создает электрическое поле, позволяющее электронам свободно проходить через непроводящую в обычном состоянии пластинку. Решающее значение здесь имеет, до какого напряжения зарядится конденсатор. Чем сильнее будет поле, тем легче электронам будет пройти по нему. Если же поле будет слишком слабым — электроны вообще не смогут пролететь через транзистор.

В этом минус полевого транзистора: необходимое напряжение для его открытия практически в десять раз больше, чем у биполярного. А плюс в том, что на пути электронов нет никакого перехода, поэтому отсутствует падение напряжения и можно добиться очень маленького сопротивления внутри транзистора. Это позволяет оперировать гораздо большими мощностями при тех же размерах.

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены. P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

IGBT

Существуют еще IGBT транзисторы — это совмещенные в одном корпусе маломощный полевой транзистор, и мощный биполярный. Такая конструкция сглаживает минусы обеих типов и используется в основном в промышленных установках для работы с очень большими мощностями.

Подключение транзисторов для управления мощными компонентами

Одной из типичных задач транзистора является включение и выключение определённого компонента схемы. Например, мощные моторы или сверхъяркие лампочки могут потреблять десятки ампер и больше. При подключении таких нагрузок напрямую через маломощную кнопку, она быстро выйдет из строя. Но если использовать транзисторы, можно легко управлять любой нагрузкой.

Соберем на макетной плате самую простую схему с использованием транзистора в режиме ключа. Включим через него светодиодную ленту. Берем стандартный NPN-транзистор. К его второй ножке — базе — подключаем маломощную кнопку. На кнопку с плюса питания подадим сигнал через резистор, который будет ограничивать силу тока базы. Первую ножку транзистора — эмиттер — подсоединим к минусу, поскольку именно минус питания будет пропускаться через транзистор. Третья ножка транзистора — коллектор — подключится к минусовому контакту светодиодной ленты.

Два контакта вставляем в линию питания, на них мы подадим 12 В с лабораторного блока. К светодиодной ленте плюс питания подключаем напрямую, а минус берем с выхода транзистора.

Готово. При нажатии на кнопку транзистор открывается и лента светится. При отпускании — лента гаснет. Таким способом через маленькую кнопку можно включить даже очень мощные устройства, главное подобрать нужный по характеристикам транзистор.

Если вам пришла в голову ошеломительная идея, как улучшить какое-то свое устройство – пожалуйста, у нас в магазине вы можете подобрать множество транзисторов под свою задачу! Все компоненты, которые мы использовали, можно купить в магазине.

Немного о транзисторах.

Пожалуй, сегодня сложно представить себе современный мир без транзисторов, практически в любой электронике, начиная от радиоприёмников и телевизоров, заканчивая автомобилями, телефонами и компьютерами, так или иначе, они используются. Типы транзисторовРазличают два вида транзисторов: биполярные и полевые. Биполярные транзисторы управляются током, а не напряжением. Бывают мощные и маломощные, высокочастотные и низкочастотные, p-n-p и n-p-n структуры. Транзисторы выпускаются в разных корпусах и бывают разных размеров, начиная от чип SMD (на самом деле есть намного меньше чем чип) которые предназначены для поверхностного монтажа, заканчивая очень мощными транзисторами. По рассеиваемой мощности различают маломощные до 100 мВт, средней мощности от 0,1 до 1 Вт и мощные транзисторы больше 1 Вт. ТранзисторыКогда говорят о транзисторах, то обычно имеют в виду биполярные транзисторы. Биполярные транзисторы изготавливаются из кремния или германия. Биполярными они названы потому, что их работа основана на использовании в качестве носителей заряда как электронов, так и дырок. Транзисторы на схемах обозначаются следующим образом: Обозначение на схемахОдну из крайних областей транзисторной структуры называют эмиттером. Промежуточную область называют базой, а другую крайнюю — коллектором. Эти три электрода образуют два p-n перехода: между базой и коллектором — коллекторный, а между базой и эмиттером — эмиттерный. Как и обычный выключатель, транзистор может находиться в двух состояниях — во «включенном» и «выключенном». Но это не значит, что они имеют движущиеся или механические части, переключаются они из выключенного состояния во включенное и обратно с помощью электрических сигналов. База, коллектор, эмиттерТранзисторы предназначены для усиления, преобразования и генерирования электрических колебаний. Работу транзистора можно представить на примере водопроводной системы. Представьте смеситель в ванной, один электрод транзистора — это труба до краника (смесителя), другой (второй) – труба после краника, там где у нас вытекает вода, а третий управляющий электрод – это как раз краник, которым мы будем включать воду.
Транзистор можно представить как два последовательно соединенных диода, в случае NPN аноды соединяются вместе, а в случае PNP – соединяются катоды. NPN и PNP транзисторыРазличают транзисторы типов PNP и NPN, PNP транзисторы открываются напряжением отрицательной полярности, NPN — положительной. В NPN транзисторах основные носители заряда — электроны, а в PNP — дырки, которые менее мобильны, соответственно NPN транзисторы быстрее переключаются. Включение NPN и PNP транзисторовUкэ = напряжение коллектор-эмиттер
Uбэ = напряжение база-эмиттер
Ic = ток коллектора
Iб = ток базы В зависимости от того, в каких состояниях находятся переходы транзистора, различают режимы его работы. Поскольку в транзисторе имеется два перехода (эмиттерный и коллекторный), и каждый из них может находиться в двух состояниях: 1) открытом 2) закрытом. Различают четыре режима работы транзистора. Основным режимом является активный режим, при котором коллекторный переход находится в закрытом состоянии, а эмиттерный – в открытом. Транзисторы, работающие в активном режиме, используются в усилительных схемах. Помимо активного, выделяют инверсный режим, при котором эмиттерный переход закрыт, а коллекторный — открыт, режим насыщения, при котором оба перехода открыты, и режим отсечки, при котором оба перехода закрыты. При работе транзистора с сигналами высокой частоты время протекания основных процессов (время перемещения носителей от эмиттера к коллектору) становится соизмеримым с периодом изменения входного сигнала. В результате способность транзистора усиливать электрические сигналы с ростом частоты ухудшается.

Некоторые параметры биполярных транзисторов

Постоянное/импульсное напряжение коллектор – эмиттер.
Постоянное напряжение коллектор – база.
Постоянное напряжение эмиттер – база.
Предельная частота коэффициента передачи тока базы
Постоянный/импульсный ток коллектора.
Коэффициент передачи по току
Максимально допустимый ток
Входное сопротивление
Рассеиваемая мощность.
Температура p-n перехода.
Температура окружающей среды и пр… Граничное напряжение Uкэо гр. является максимально допустимым напряжение между коллектором и эмиттером, при разомкнутой цепи базы и токе коллектора. Напряжение на коллекторе, меньше Uкэо гр. свойственны импульсным режимам работы транзистора при токах базы, отличных от нуля и соответствующих им токах базы (для n-p-n транзисторы ток базы >0, а для p-n-p наоборот, Iб <0). К биполярным транзисторам могут быть отнесены однопереходные транзисторы, таковым является например КТ117. Такой транзистор представляет собой трехэлектродный полупроводниковый прибор с одним р-n переходом. Однопереходный транзистор состоит из двух баз и эмиттера. Однопереходные транзисторыВ последнее время в схемах часто стали применять составные транзисторы, называют их парой или транзисторами Дарлингтона, они обладают очень высоким коэффициентом передачи тока, состоят они из двух или более биполярных транзисторов, но выпускаются и готовые транзисторы в одном корпусе, таким является например TIP140. Включаются они с общим коллектором, если соединить два транзистора, то они будут работать как один, включение показано на рисунке ниже. Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Составной транзисторНекоторые недостатки составного транзистора: низкое быстродействие, особенно перехода из открытого состояния в закрытое. Прямое падение напряжения на переходе база-эмиттер почти в два раза больше чем в обычном транзисторе. Ну и само собой, потребуется больше места на плате.

Проверка биполярных транзисторов

Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Проверка транзистора обычно осуществляется омметром, проверяют оба p-n перехода транзистора: коллектор – база и эмиттер – база. Для проверки прямого сопротивления переходов p-n-p транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра. При проверке n-p-n транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. Транзисторы так же можно прозванивать цифровым мультиметром в режиме прозвонки диодов. Для NPN красный щуп прибора «+» присоединяем к базе транзистора, и поочередно прикасаемся черным щупом «-» к коллектору и эмиттеру. Прибор должен показывать некоторое сопротивление, примерно от 600 до 1200. Затем меняем полярность подключения щупов, в этом случае прибор ничего не должен показывать. Для структуры PNP порядок проверки будет обратным.

MOSFET транзисторы

MOSFET транзисторы

Несколько слов хочу сказать про MOSFET транзисторы (metal–oxide–semiconductor field-effect transistor), (Метал Оксид Полупроводник (МОП)) – это полевые транзисторы, не путать с обычными полевиками! У полевых транзисторов три вывода: G — затвор, D — сток, S – исток. Различают N канальный и Р, в обозначении данных транзисторов имеется диод Шоттки, он пропускает ток от истока к стоку, и ограничивает напряжение сток – исток. Применяются они в основном для коммутации больших токов, управляются они не током, как биполярные транзисторы, а напряжением, и как правило, имеет очень малое сопротивление открытого канала, сопротивление канала величина постоянная и не зависит от тока. MOSFET транзисторы специально разработаны для ключевых схем, можно сказать как замена реле, но в некоторых случаях можно и усиливать, применяются в мощных усилителях НЧ. Плюсы у данных транзисторов следующие:
Минимальная мощность управления и большой коэффициент усиления по току
Лучшие характеристики, например большая скорость переключения.
Устойчивость к большим импульсам напряжения.
Схемы, где применяются такие транзисторы, обычно более простые. Минусы:
Стоят дороже, чем биполярные транзисторы.
Боятся статического электричества.
Наиболее часто для коммутации силовых цепей применяют MOSFET с N-каналом. Напряжение управления должно превышать порог 4 В, вообще, необходимо 10-12 В для надежного включения MOSFET. Напряжение управления — это напряжение, приложенное между затвором и истоком для включения MOSFET транзистора.

Рекомендации по эксплуатации транзисторов

Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п. Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым, например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды. Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.

Теги:

Адвансед Опубликована: 2012 г. 0 2

Вознаградить Я собрал 0 4

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *