Как перемотать импульсный трансформатор своими руками
Перейти к содержимому

Как перемотать импульсный трансформатор своими руками

  • автор:

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить. Намотать. Мотать. Самостоятельно. Своими руками. Сделать.

Материал является пояснением и дополнением к статье:
Расчет трансформатора
Проектирование силового импульсного трансформатора.

Надежность и коэффициент заполнения

При намотке трансформатора необходимо добиваться максимальной плотности заполнения. Чем плотнее лежат витки, тем плотнее прилегают обмотки друг к другу и сердечнику, тем меньше потери и помехи. Кажется, что проще всего для плотного заполнения мотать виток к витку, слой поверх слоя. Но если Вы мотаете трансформатор вручную, без станка, то ровно положить витки при такой намотке не получается. В результате плотность и качество намотки получаются низкими. Кроме того при такой намотке витки верхних слоев проваливаются внутрь обмотки и располагаются рядом с витками нижних. А напряжение между слоями может быть высоким. При нагреве и вибрации в реальных условиях эксплуатации может произойти пробой. Мы убедились, что при ручной намотке оптимальным является прокладка тонкого слоя изоляции после каждого слоя. Так проще мотать, надежнее изоляция. Как это не странно, но получается более плотная намотка. Если мотаем станком, то такой необходимости нет, так как станок кладет витки ровно и плотно. Верхние витки не проваливаются внутрь и контактируют только с предыдущим слоем.

Скин-эффект

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

О скин-эффекте мы уже писали в статье про расчет трансформатора. Этот эффект возникает из-за вытеснения тока из проводника на его поверхность. Снизить его можно, осуществляя намотку не одним толстым проводником, а жгутом из тонких проводников. Для частот до 100 кГц можно применять провод 0.25 мм, до 1 МГц — 0.1 мм, для более высоких частот 0.05 мм.

Другим способом борьбы со скин-эффектом является выполнение обмотки толстой (0.1 мм) медной фольгой. Такой фольгой удобно мотать на прямые каркасы. Намотать фольгой обмотку на торе нам не удавалось. Чтобы намотать обмотку фольгой, нужно вырезать полосу фольги на 6 мм уже ширины каркаса, напаять на начало и конец полосы выводы из изолированного провода. Причем напаять так, чтобы выводы находились с разных сторон фольговой ленты. Это обеспечит равномерное распределение тока по всей площади ленты. Вырежем полоску трансформаторной бумаги шириной каркаса. Сложим полосу фольги и полосу бумаги так, чтобы фольга располагалась на бумаге ровно посередине, и минимальное расстояние от края фольги до края бумаги было 3 мм. Это обеспечит нам надежную изоляцию. Фольгу и бумагу можно скрепить клеем. Так удобнее мотать. Теперь наматываем полученную бумажно-медную ленту на каркас. Снаружи обмотку изолируем слоем трансформаторной бумаги.

Индуктивность рассеивания

Одним из отличий реального трансформатора от идеального является наличие индуктивности связи (рассеивания) между обмотками. Нарастание напряжения на первичной обмотке приводит к увеличению тока в нагруженной вторичной не сразу, а с некоторой задержкой. Так проявляется индуктивность рассевания. При высоких частотах работы индуктивность связи является серьезной проблемой. Чтобы ее уменьшить, первичную обмотку делают из двух. Сначала мотают нужно количество витков первичной обмотки жгутом с количеством проводов вдвое меньше расчетного. Потом мотают вторичные обмотки. Потом еще раз мотают нужное для первичной обмотки количество витков оставшейся половинкой жгута. Теперь две части первичной обмотки соединяют параллельно. Будьте внимательны. количество витков верхней и нижней частей первичной обмотки должны быть строго одинаковые, иначе будет короткое замыкание. Описанный прием позволяет снизить индуктивность связи (рассеивания) втрое.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если взять, и вторичку, скажем, вместо провода намотать медной фольгой, скажем тем же количеством витков, причем сечение фольги примерно равно предполагаемому проводу. Читать ответ.

Плавная регулировка, изменение яркости свечения светодиодов. Регулятор.
Плавное управление яркостью свечения светодиодов. Схема устройства с питанием ка.

Расчет силового резонансного фильтра. Рассчитать онлайн, он-лайн, on-l.
Как получить синусоидальное напряжение на выходе при входном напряжении сложной .

Индуктивность утечки, рассеивания, рассеяния, связи. Силовой импульсны.
Индуктивность рассеивания — причина пробоя силового ключа, транзистора. Учет инд.

Микроконтроллеры. Составление программы. Инструменты проектирования сх.
Как и с помощью чего программировать и отлаживать микро-контроллеры, проектирова.

Высокочастотный трансформатор своими руками

Импульсный, он же высокочастотный, трансформатор – это отдельный вид трансформаторов, который может работать с очень короткими импульсами тока и напряжениями на входе, обеспечивая при этом минимальный уровень искажения выходных импульсов.

Чисто технически ничего не меняется, в составе высокочастотного трансформатора, также как и в силовом, имеются:

1. Первичная обмотка, которая представляет собой катушку индуктивности.

2. Сердечник, который позволяет равномерно распределить возникающую магнитную индукцию.

3. Вторичная обмотка, в которой из-за магнитной индукции первой катушки возникает ток.

Если так разобраться, и силовой, и импульсный трансформатор работают только с переменными токами. Однако, отличие первых от вторых в том, что импульсные имеют специальный сердечник, который позволяет работать с очень быстрыми колебаниями. при повышении частот в таких сердечниках возникает обратный эффект, когда в первичной обмотке уже нет тока, но сердечник всё еще передаёт остаточную энергию вторичной обмотке.

Таким образом, существенно возрастает эффективность преобразования тока (коэффициент) и ощутимо уменьшаются габариты конечного устройства.

Виды высокочастотных трансформаторов

Как и было отмечено выше, конструктивно импульсные тр-ры практически ничем не отличаются от силовых. Поэтому они могут быть:

  • Броневыми;
  • Стержневыми;
  • Бронестержневыми (комбинация первых двух);
  • Тороидальными.

В первых трех конструктивных решениях применяется специальное трансформаторное железо, которое должно быть по габаритам соотнесено с катушками первичной и вторичной обмоток. Собрать и намотать такие трансформаторы достаточно сложно, поэтому их проектируют сразу как готовое отраслевое решение (для применения в конкретных приборах и условиях).

Тороиды (кольца) из ферритов, которые могут эксплуатироваться на высоких частотах, заметно доступнее. Их можно найти практически в любом магазине радиоэлектроники или заказать на дом.

Собственно, по этой причине самодельную силовую технику с импульсными блоками питания чаще всего делают на тороидальных ВЧ трансформаторах.

В промышленности можно встретить трансформаторы, работающие с напряжениями:

  • До 10 кВ;
  • До 50 кВ;
  • И свыше 50 кВ.

Они предполагают совсем другие подходы в проектировании.

Преимущества и недостатки

Если на преимуществах можно не останавливаться подробно (это минимальные габариты и высокая эффективность), то о недостатках нужно упомянуть обязательно. Дело в том, что они влияют на проектирование конечного изделия, чаще всего это ИБП (импульсный блок питания). А именно:

1. Для работы обязательно требуется ВЧ-генератор. То есть ток требует подготовки и проходит, по сути, не одну процедуру преобразования после первичного источника. Этот генератор должен быть согласован по параметрам с самим трансформатором.

2. Колебания на высоких частотах создают различные помехи как в первичном источнике тока (например, в сети переменного тока), так и в питаемой цепи. А это может негативно отразиться на работе не только целевого устройства, но и на всех остальных устройств, подключённых к первичному источнику. А значит, необходимо обязательно предусматривать фильтры от ВЧ-помех на входе и выходе ИБП.

3. Без нагрузки эксплуатировать ИБП нельзя. Дело в том, что в силовых трансформаторах закладывается некоторый запас по мощности, а в случае с импульсными сделать это физически очень сложно.

Как и было сказано выше, трансформатор согласуется по параметрам с ВЧ-генератором. То есть для проектирования нужно как минимум знать характеристики вашего генератора или проектировать его вместе с тр-ром.

Наиболее подробную методику, подходящую для профессиональных инженеров можно изучить, например, в методическом пособии Томского политеха, ну или в других научных трудах (их масса).

А можно воспользоваться специальным программным обеспечением, например, PI Expert Suite (она позволяет спроектировать и оптимизировать блоки питания что называется «под ключ»), ExcellentIT или аналогичным ПО.

Из входных параметров вам понадобятся:

  • Максимальная индукция (порог для ферритов — 0,39 Тл, но лучше использовать показатель 0,186 Тл, он характерен для эксплуатации тр-ра в самых плохих условиях).
  • Частота преобразования. Это один из ключевых показателей. Она может быть в диапазоне 20-120 кГц. Ниже минимума – может появится «свист» при работе, а выше – существенно вырастут динамические потери.
  • Плотность тока. Оптимальный диапазон 5-6 А/мм.кв., но не более 10.
  • Напряжение на входе (определяется первичным источником или параметрами генератора).
  • Коэффициент заполнения. В идеале – 0,35 (больше ставить точно не стоит, могут быть проблемы с соотношением габаритов сердечника и обмоток).

Расчётные выходные параметры:

  • Напряжение (в зависимости от того, что вам требуется);
  • Ток (аналогично);
  • Диаметр провода (чем толще проводник, тем хуже будет его работа);
  • Наличие стабилизации выходов;
  • Тип выпрямления и преобразования (в соответствии с вашей схемой, это может быть мостовое, одно- или двуполярное со средней точкой и т.д.);
  • Потери на диодах (для ультрабыстрых моделей это около 0,6 В даже в самых плохих условиях).

После произведения расчётов вы получаете конкретные параметры и габариты, в том числе:

  • Число витков первички и вторички;
  • Плотность тока;
  • Индуктивность дросселя;
  • И т.д.

По ним остаётся только правильно подобрать сердечники и выполнить намотку.

После всего, что было изложено выше, это самое простое. Нужно только:

  • Намотать первичку. Если вы получили небольшое количество витков, то можно заменить выбранную проволоку на связку из проводов меньшего диаметра, так распределение по сердечнику будет равномернее. Главное, чтобы совокупная площадь сечения не вышла за пределы изначальной.
  • Выполнить изоляцию. Нельзя делать большой зазор (толщину слоя).
  • Намотать вторичку (в соответствии с вашей схемой, например, с выводом средней точки, проволоку тоже можно заменить на связку).

Выполнять проверку трансформатора можно только с нагрузкой и собранным генератором частоты!

Мнения читателей
  • Дмитрий Константинович / 22.10.2023 — 22:45 Ответ:Выделяемое количество теплоты равно произведению удельных потерь на объем провода
  • Дмитрий Константинович / 22.10.2023 — 22:34 Почему площадь сечения провода обмотки(как понял, лицендрата)ограничивается сверху?Снизу — понятно: растёт активное сопротивление обмотки, падает добротность(и КПД источника).Но ограничение сверху — это что-то неясное.Пожалуйста, проясните.
  • Виктор Смирнов / 14.11.2020 — 23:30 Могу ли я использовать в качестве генератора частоты сварочный инвертор? Выходное напряжение холостого хода прим. 45 В. Частота — 20 кГ.

Перемотка импульсного трансформатора от БП ПК

gavrilser

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Поделиться

Последние посетители 0 пользователей онлайн

  • Ни одного зарегистрированного пользователя не просматривает данную страницу

Сообщения

Подбор конденсаторов дал результат. И даже читает пациента.Но вот стереть и записать никак!
Может я не понял : а как быть с другими вызовами ?

Спасибо всем за консультацию. Для закрепления, я хочу уточнить, схема по моей картинке верная — спасибо АРВ, нагрузка потребляет 65Вт, напряжение 24В, значит ток нагрузки 2.7А, т.е. мне нужно два диода на 2.7А 24В, можно показать пример для моей ситуации? По схеме ИМХО мне не всё понятно, там я так понял используем диодный мост типа того, что на картинке, а как потом после него ток на БП переменкой заходит 220В? Как выбрать эти диоды?

oleg_s

Я однажды отремонтировал 12 В, который от переменки 230 запитали. Автохолодильник в розетку сунули.

Когда в эпоху 3УСЦТ выходила из строя электронная регулировка громкости и динамик орал во всю мощь К174УН7, находчивые бабушки посредством синей изоленты приматывали к корпусу ТВ подушку подходящих размеров — это создавала вполне комфортные условия для просмотра «Санты-Барбары».

Просто зашёл

Ничего не мешает… но так делать ненужно по объяснимым причинам. так как это тоже самое если Вы поставите на квартиру или дом всего лишь один автомат и через него всё подключите… надеюсь не нужно объяснять какие проблемы могут возникнуть при такой реализации… уверяю Вас, что не просто так делают электрощит с множеством автоматов (и дифференциальных автоматов), а если всё делать правильно, то и в щите должен присутствовать не только вводной автомат, но и противопожарное УЗО (с отсечкой до 300 мА), а уже затем разделение питания по потребителям через дополнительные УЗО, автоматы и дифференциальные автоматы в зависимости от необходимых требований. Если не ставят противопожарное УЗО, то да, а если ставят, то только после него. А вот это неправильно. для освещения диф-автоматы излишне, если Вы не планируете менять лампочки при включенных выключателях.

Да! Именно — заклеить скотчем! Вызов не будет проходить при добавочном большом сопротивлениии к динамику. Лет 10 назад я ковырял- изучал эту тему. Самое простое -клеить динамик!

Как рассчитать и намотать импульсный трансформатор для полумостового блока питания?

Как рассчитать и намотать импульсный трансформатор для полумостового блока питания?

В этой статье рассказано о том, как рассчитать и намотать импульсный трансформатор для самодельного полумостового блока питания, который можно изготовить из электронного балласта сгоревшей компактной люминесцентной лампочки.

Речь пойдёт о «ленивой намотке». Это когда лень считать витки. https://oldoctober.com/

Самые интересные ролики на Youtube

  1. Выбор типа магнитопровода.
  2. Получение исходных данных для простого расчёта импульсного трансформатора.
  3. Как выбрать ферритовый кольцевой сердечник?
  4. Как рассчитать число витков первичной обмотки?
  5. Как рассчитать диаметр провода для первичных и вторичных обмоток?
  6. Особенности намотки импульсных трансформаторов.
  7. Как намотать импульсный трансформатор?
  8. Дополнительные материалы.

Выбор типа магнитопровода.

Наиболее универсальными магнитопроводами являются Ш-образные и чашкообразные броневые сердечники. Их можно применить в любом импульсном блоке питания, благодаря возможности установки зазора между частями сердечника. Но, мы собираемся мотать импульсный трансформатор для двухтактного полумостового преобразователя, сердечнику которого зазор не нужен и поэтому вполне сгодится кольцевой магнитопровод. https://oldoctober.com/

Для кольцевого сердечника не нужно изготавливать каркас и мастерить приспособление для намотки. Единственное, что придётся сделать, так это изготовить простенький челнок.

На картинке изображён ферритовый магнитопровод М2000НМ.

Идентифицировать типоразмер кольцевого магнитопровода можно по следующим параметрам.

D – внешний диаметр кольца.

d – внутренний диаметр кольца.

H – высота кольца.

В справочниках по ферритовым магнитопроводам эти размеры обычно указываются в таком формате: КDxdxH.

Получение исходных данных для простого расчёта импульсного трансформатора.

Помню, когда наши электросети ещё не приватизировали иностранцы, я строил импульсный блок питания. Работы затянулись до ночи. Во время проведения последних испытаний, вдруг обнаружилось, что ключевые транзисторы начали сильно греться. Оказалось, что напряжение сети ночью подскочило аж до 256 Вольт!

Конечно, 256 Вольт, это перебор, но ориентироваться на ГОСТ-овские 220 +5% –10% тоже не стоит. Если выбрать за максимальное напряжение сети 220 Вольт +10%, то:

242 * 1,41 = 341,22V (считаем амплитудное значение).

341,22 – 0,8 * 2 ≈ 340V (вычитаем падение на выпрямителе).

Определяем примерную величину индукции по таблице.

Пример: М2000НМ – 0,39Тл.

Частота генерации преобразователя с самовозбуждением зависит от многих факторов, в том числе и от величины нагрузки. Если выберите 20-30 кГц, то вряд ли сильно ошибётесь.

Граничные частоты и величины индукции широко распространённых ферритов.

Марганец-цинковые ферриты.
Параметр Марка феррита
6000НМ 4000НМ 3000НМ 2000НМ 1500НМ 1000НМ
Граничная частота при tg δ ≤ 0,1, МГц 0,005 0,1 0,2 0,45 0,6 1,0
Магнитная индукция B при Hм = 800 А / м, Тл 0,35 0,36 0,38 0,39 0,35 0,35
Никель-цинкове ферриты.
Параметр Марка феррита
200НН 1000НН 600НН 400НН 200НН 100НН
Граничная частота при tg δ ≤ 0,1, МГц 0,02 0,4 1,2 2,0 3,0 30
Магнитная индукция B при Hм = 800 А / м, Тл 0,25 0,32 0,31 0,23 0,17 0,44

Как выбрать ферритовый кольцевой сердечник?

Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в «Дополнительных материалах».

Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.

Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.

Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.

В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.

Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».

Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.

Как рассчитать число витков первичной обмотки?

Вводим исходные данные, полученные в предыдущих параграфах, в форму калькулятора и получаем количество витков первичной обмотки. Меняя типоразмер кольца, марку феррита и частоту генерации преобразователя, можно изменить число витков первичной обмотки.

Нужно отметить, что это очень-очень упрощённый расчёт импульсного трансформатора.

Но, свойства нашего замечательного блока питания с самовозбуждением таковы, что преобразователь сам адаптируется к параметрам трансформатора и величине нагрузки, путём изменения частоты генерации. Так что, с ростом нагрузки и попытке трансформатора войти в насыщение, частота генерации возрастает и работа нормализуется. Точно также компенсируются и мелкие ошибки в наших вычислениях. Я пробовал менять количество витков одного и того же трансформатора более чем в полтора раза, что и отразил в ниже приведённых примерах, но так и не смог обнаружить никаких существенных изменений в работе БП, кроме изменения частоты генерации.

Как рассчитать диаметр провода для первичных и вторичных обмоток?

Диаметр провода первичных и вторичных обмоток зависит от параметров БП, введённых в форму. Чем больше ток обмотки, тем больший потребуется диаметр провода. Ток первичной обмотки пропорцонален «Используемой мощности трансформатора».

Особенности намотки импульсных трансформаторов.

Намотка импульсных трансформаторов, а особенно трансформаторов на кольцевых и тороидальных магнитопроводах имеет некоторые особенности.

Дело в том, что если какая-либо обмотка трансформатора будет недостаточно равномерно распределена по периметру магнитопровода, то отдельные участки магнитопровода могут войти в насыщение, что может привести к существенному снижению мощности БП и даже привести к выходу его из строя.

Казалось бы, можно просто рассчитать расстояние между отдельными витками катушки так, чтобы витки обмотки уложились ровно в один или несколько слоёв. Но, на практике, мотать такую обмотку сложно и утомительно.

Мы же пытаемся мотать «ленивую обмотку». А в этом случае, проще всего намотать однослойную обмотку «виток к витку».

Что для этого нужно?

Нужно подобрать провод такого диаметра, чтобы он уложился «виток к витку», в один слой, в окно имеющегося кольцевого сердечника, да ещё и так, чтобы при этом число витков первичной обмотки не сильно отличалось от расчётного.

Если количество витков, полученное в калькуляторе, не будет отличаться более чем на 10-20% от количества, полученного в формуле для расчёта укладки, то можно смело мотать обмотку, не считая витков.

Правда, для такой намотки, скорее всего, понадобится выбрать магнитопровод с несколько завышенной габаритной мощностью, что я уже советовал выше.

1 – кольцевой сердечник.

3 – витки обмотки.

D – диаметр по которому можно рассчитать периметр, занимаемый витками обмотки.

На картинке видно, что при намотке «виток к витку», расчетный периметр будет намного меньше, чем внутренний диаметр ферритового кольца. Это обусловлено и диаметром самого провода и толщиной прокладки.

На самом же деле, реальный периметр, который будет заполняться проводом, будет ещё меньше. Это связано с тем, что обмоточный провод не прилегает к внутренней поверхности кольца, образуя некоторый зазор. Причём, между диаметром провода и величиной этого зазора существует прямая зависимость.

Не стоит увеличивать натяжение провода при намотке с целью сократить этот зазор, так как при этом можно повредить изоляцию, да и сам провод.

По нижеприведённой эмпирической формуле можно рассчитать количество витков, исходя из диаметра имеющегося провода и диаметра окна сердечника.

Максимальная ошибка вычислений составляет примерно –5%+10% и зависит от плотности укладки провода.

w = π(D – 10S – 4d) / d, где:

w – число витков первичной обмотки,

π – 3,1416,

D – внутренний диаметр кольцевого магнитопровода,

S – толщина изолирующей прокладки,

d – диаметр провода с изоляцией,

/ – дробная черта.

Как измерить диаметр провода и определить толщину изоляции – рассказано здесь.

Несколько примеров расчёта реальных трансформаторов.

● Мощность – 50 Ватт.

Магнитопровод – К28 х 16 х 9.

w= π (16 – 10*0,1 – 4*0,39) / 0,39 ≈ 108 (витков).

Реально поместилось – 114 витков.

● Мощность – 20 Ватт.

Магнитопровод – К28 х 16 х 9.

w = π (16 – 10*0,1 – 4*0,25) / 0,25 ≈ 176 (витков).

Реально поместилось – 176 витков.

● Мощность – 200 Ватт.

Магнитопровод – два кольца К38 х 24 х 7.

w = π (24 – 10*0,1 – 4*1,07) / 1,07 ≈ 55 (витков).

Реально поместилось 58 витков.

В практике радиолюбителя нечасто выпадает возможность выбрать диаметр обмоточного провода с необходимой точностью.

Если провод оказался слишком тонким для намотки «виток к витку», а так часто бывает при намотке вторичных обмоток, то всегда можно слегка растянуть обмотку, путём раздвигания витков. А если не хватает сечения провода, то обмотку можно намотать сразу в несколько проводов.

Как намотать импульсный трансформатор?

Вначале нужно подготовить ферритовое кольцо.

Для того чтобы провод не прорезал изоляционную прокладку, да и не повредился сам, желательно притупить острые кромки ферритового сердечника. Но, делать это не обязательно, особенно если провод тонкий или используется надёжная прокладка. Правда, я почему-то всегда это делаю.

При помощи наждачной бумаги скругляем наружные острые грани.

То же самое проделываем и с внутренними гранями кольца.

Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку.

В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, лавсановую плёнку или даже бумагу.

При намотке крупных колец с использованием провода толще 1-2мм удобно использовать киперную ленту.

Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.

Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным.

Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.

При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок.

Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.

Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Таким образом, изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.

Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки.

Необходимую длину провода обмотки определить совсем просто. Достаточно измерить длину одного витка и перемножить это значение на необходимое количество витков. Небольшой припуск на выводы и погрешность вычисления тоже не помешает.

34(мм) * 120(витков) * 1,1(раз) = 4488(мм)

Если для обмотки используется провод тоньше, чем 0,1мм, то зачистка изоляции при помощи скальпеля может снизить надёжность трансформатора. Изоляцию такого провода лучше удалить при помощи паяльника и таблетки аспирина (ацетилсалициловой кислоты).

Будьте осторожны! При плавлении ацетилсалициловой кислоты выделяются ядовитые пары!

Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.

Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05… 0,1мм.

Наматываем начало обмотки так, чтобы надёжно закрепить место соединения.

Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.

Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика).

Затем выводы вместе с трубкой нужно закрепить х/б нитью.

Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты. Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

Если предполагается использовать выпрямитель с нулевой точкой, то можно намотать вторичную обмотку в два провода. Это обеспечит полную симметрию обмоток. Витки вторичных обмоток также должны быть равномерно распределены по периметру сердечника. Особенно это касается наиболее мощных в плане отбора мощности обмоток. Вторичные обмотки, отбирающие небольшую, по сравнению с общей, мощность, можно мотать как попало.

Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно.

На картинке вторичная обмотка, намотанная в четыре провода.

Дополнительные материалы.

  • Скачать справочник «Малогабаритные магнитопроводы и сердечники» И. Н. Сидоров и др. (4,4МБ),
  • Скачать программу для упрощённого расчёта импульсных трансформаторов (1МБ).
  • Скачать портативную программу «Расчёт импульсных трансформаторов» (180КБ).
  • Таблица с данными обмоточных проводов.
  • Скачать книгу: «Изделия из ферритов и магнито-диэлектриков» Злобин (5,6МБ).

Пароль на архивы: oldoctober.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *