Нет заземления в квартире чем грозит
Перейти к содержимому

Нет заземления в квартире чем грозит

  • автор:

Форум гитаристов

У нас самая большая гитарная тусовка

В связи с текущими событиями на форуме вводятся новые правила. Ознакомление обязательно.

  • Форум гитаристов »
  • Оборудование »
  • equipment.others (Модератор: NT) »
  • Тема: Заземление в доме без заземления.

Страницы: [1] 2 3 [Дальше >>] Вниз

Автор Тема: Заземление в доме без заземления. (Прочитано 2625 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Страницы: [1] 2 3 [Дальше >>] Вверх

Какие розетки выбрать — розетки с заземлением или розетки без заземления?

Какие розетки выбрать — розетки с заземлением или розетки без заземления?

23 июня 2017

Если в помещении нет заземления, то в нем устанавливают розетки без заземления. Обычно это старые жилые дома или офисы, где не проводилось капитального ремонта и замены электропроводки. В таких помещениях нет смысла устанавливать розетки с заземлением, потому что заземляющий контакт розетки будет просто не к чему подключить. Если здание современное и в нем предусмотрено заземление, то обычно в нем устанавливаются розетки с заземлением. Визуально один вид розеток легко отличить от другого по наличию заземляющего контакта. Розетка Florence без заземления Розетка Florence с заземлениемСлучается, что владелец помещения просто не понимает, что такое заземление и зачем оно нужно. Он может им просто пренебречь, немного сэкономить и установить розетки без заземления в дом с современной электропроводкой с заземлением.

Рассмотрим, почему это опасно? В наших квартирах множество электроприборов. При нормальной работе прибора напряжения на корпусе нет. Жильцы квартиры привыкли, что до электроприбора в процессе работы можно безбоязненно дотрагиваться. В случае поломки электроприбора, включенного в сеть, на его корпусе может возникнуть напряжение, дотрагиваться до него опасно для жизни. Визуально наличие напряжения на корпусе прибора определить не возможно, если только он не нагрелся до такой степени, что начал плавиться, дымить и пахнуть. Представим себе ситуацию, что электроприбор сломался, и на его корпусе появилось напряжение. Если в жилом помещении нет заземления, то при касании к корпусу сломанного электрического прибора (утюга, пылесоса или стиральной машины) весь ток пройдет через тело человека, и это может быть смертельно опасным. Для здоровья человека опасен ток в несколько десятков миллиампер. Если в жилом помещении есть заземление, то ситуация будет другой. Сопротивление тела человека гораздо выше, чем сопротивление проводников в цепи заземления. Большая часть тока при поломке электрического прибора уйдет именно в цепь заземления. Даже если человеку не повезет коснуться до электрического прибора в момент его поломки, и корпус прибора будет под напряжением, то все равно он получит гораздо более слабый удар электрическим током, чем мог бы получить при отсутствии заземления. Подключение розеток должно проводится квалифицированным специалистом! Если к клеммам заземления розетки в процессе их установки не был подсоединен провод заземления, то установка розетки с заземлением не дает никаких преимуществ по сравнению с розеткой без заземления. Напоминаем, что заземление – это мера, повышающая безопасность и необходимая для защиты от удара электрическим током, и если оно предусмотрено, то не стоит им пренебрегать, даже если в вашем электрическом щите установлены все необходимые и самые современные аппараты защиты (автоматические выключатели, УЗО и др.). В целях повышения электробезопасности в домах с современной электропроводкой необходимо устанавливать электрические розетки с заземлением. Для повышения безопасности группы розеток в квартирном электрощите должны быть также защищены качественным устройством защитного отключения (УЗО).

Нет заземления в квартире чем грозит

Во времена социализма, жилые дома подключались обычно к электрической сети по схеме фаза-ноль. В своё время это считалось нормальным и достаточным для безопасности. Сейчас все вновь строящиеся дома подключают к электросети по новому стандарту. Этот стандарт предусматривает подключение по трёхпроводной схеме. К двум проводам (фаза-ноль) добавляется ещё один провод защитного заземления. Такая схема увеличивает электробезопасность в жилом доме. Поэтому проект подстанций, лучше заказывать у профессионалов, так же как и монтаж электропроводки в доме.

При старой схеме подключения бывали случаи поражения человека электрическим током. Если фазный провод замкнёт или пробьёт на корпус какого-либо бытового прибора, то высока вероятность попасть под действующее напряжение 220 вольт, что иногда и случалось.

Чтобы предотвратить эту опасность корпуса бытовых электроприборов стали некоторые занулять, то есть нулевой проводник подключать к корпусу прибора. Это проблему окончательно не решало, появились другие не менее опасные последствия этого решения.

Сегодня реальность такова, что в продаже уже практически нет старых розеток, все они по европейскому стандарту, то есть имеют три клеммы. Некоторые предлагают третий контакт перемычкой подключить к нулевой жиле вместо заземляющего проводника. Это сегодня правилами ПУЭ (Правила Устройства Электроустановок) запрещено, нулевой провод не может использоваться как заземление. В этом случае при обрыве нуля корпус прибора будет находиться под напряжением, а это критическая ситуация, поэтому и запрещает ПУЭ такое «усовершенствование».

Ещё страшнее ситуация будет, когда при ремонте электрической сети случайно перепутают местами фазу и ноль. В этом случае все корпуса электроприборов оказываются под напряжением 220 вольт. Лучше в этом случае не заниматься самодеятельностью и оставить старую схему подключения, будет меньше беды.

Нередко бывает, что происходит по каким-либо причинам обрыв нулевого провода.

Это приводит к тому, что на подстанции происходит «перекос фаз», то есть к одному дому подходит очень низкое напряжение, а к другому очень высокое. При низком напряжении не могут работать холодильники, кондиционеры, насосы и другие приборы с электродвигателями, они гудят и греются, пока не сгорят. В тех же домах где повышенное напряжение, положение не лучше, быстро перегорают электроприборы и электролампы.

Так какой же выход из данной ситуации? Только один – перейти на евро стандарт, а для этого потребуется установить в жилом доме заземление, тогда будут устранены все вышеперечисленные проблемы.

Зануление в двухпроводной сети когда нет заземления. Мысли вслух

Многим конечно же эта статья не понравится как с технической точки зрения, так и со стороны безопасности. Уже вижу как кто-то полез в ПУЭ или ТКП (у меня в Беларуси оно называется «Технический Кодекс установившейся Практики»), что бы сказать мне, что так делать нельзя. Оно скорее всего так и есть, но написать статью хочется. Да и заработанную карму потратить на этом сайте негде (в смысле применить эти набранные очки с пользой для себя или кого-то ещё).

Всё что будет написано ниже не стоит воспринимать как призыв к действию. Воспринимайте это как рассуждение, разминку для мозга.

Речь пойдёт о двух известных проблемах в жилых домах где нет отдельного заземляющего проводника даже в виде деления PEN на PE и N в ВРУ здания:

  1. Как заземлиться где нет «земли»?
  2. Защита при отгорании магистрального нулевого провода
Без защитного проводника

Единственным вариантом защиты человека от поражения электрическим током при попадании фазы на не заземлённый (и не занулённый) корпус эл.прибора возможен с электромеханическим УЗО. Есть ещё СУП (Система Уравнивания Потенциалов), но если она нормально не заземлена это может нести ещё больший риск.

Здесь всё просто, при протекании тока через условный пол — тело человека — корпус электроприбора УЗО сработает от разности токов втекающих и вытекающих по нулю и фазе. То есть не важно по какому пути пойдёт эта утечка тока: фаза-пол, ноль-пол или фаза и отгоревший ноль — пол — УЗО сработает в любом из этих вариантов. Важно одинаковое направление этих токов.

image

Но помимо безопасности существуют трудности которые порой носят непреодолимый характер:

1. Электроприбор «кусается» из-за его конструктивных особенностей (конденсаторы в блоке питания).
2. Электроприбор изначально не «кусался», но начал «кусаться», при этом он как и прежде работает. Переворачивание вилки в розетке не помогает. Денег, времени и пр. на ремонт нет, хочется только устранить «кусания» или даже «подёргивания» и пользоваться пока окончательно не сломается.
3. Электроприбор не «кусается», однако из-за наличия «гуляющего» напряжения на корпусе не хочет нормально работать (например длинный USB провод от компьютера к принтеру, гудение в динамиках звуковых усилителей, плохой приём радиосигнала и др).

Что бы избавиться от этих проблем, многие жертвуют безопасностью подсоединяя корпуса эл.приборов на прямую к «заземлению» в виде труб отопления, арматуры, или если позволяют условия: закопав металлический штырь в землю. Опасность этих способов «заземления» давно известна. На определённых участках трассы трубы могут быть соединены пластиком, а не металлом, иметь большое сопротивление с заземлением. Токи утечки от электроприборов способствуют быстрой коррозии труб. При попадании фазы на корпус автоматический выключатель или УЗО может не сработать если протекаемые токи будут малы. Появится риск поражения эл.током не только того кто сделал такое заземление, но и всех тех кто волею случая оказался в зоне поражения (сантехник меняющий трубу или соседи этажом ниже и выше).

Зануление от щита

Здесь необходимо сделать отступление.

Хоть в наших электросетях ноль и соединён с контуром заземления на ТП, из-за неравномерной токовой нагрузки по фазам, а так же большой протяжённости кабельных линий, у удалённых потребителей электроэнергии напряжение между нулём и заземлением может составлять больше десятка вольт. Падение напряжения есть и в нулевом проводе!

Стоя на мокром бетонном полу и касаясь руками к корпусу занулённого водонагревателя или металлического крана соединённого металлическими шлангами, вы определённо сможете почувствовать это напряжение. А если соединить нулевой провод с закопанными в землю металлическими трубами или прочими конструкциями, по ним может пойти не слабый такой ток в несколько ампер.

То есть даже теоретически не каждым нулевым проводом можно сделать «зануление» если оно намертво прикручено в ВРУ с разделением там же PEN на PE и N. Такие случаи бывают, например когда у здания нет своего контура заземления. Между настоящей землёй (точка соединения на ТП контура заземления и отходящего нулевого провода) и разделённой «землёй» в ВРУ здания возникнет потенциал.

image

Если ноль не «кусается», то можно пофантазировать на тему как можно им защитится на время пока он цел. А что бы знать что он цел, необходимо привязаться к некой точке у которой хотя бы в теории будет неизменный нулевой электрический потенциал (опорное напряжение) относительно земли. Этой точкой может стать место присоединения нулевого провода к шине заземления на ТП, а сама земля быть как бы идеальным проводником на котором условно нет падения напряжения на участке «земля ТП — земля подключенного здания». Вот к примеру цитата одного комментария на ютубе на эту же тему

… есть такое понятие ( статистический(искусственный 0), если его использовать относительно естественного 0 можно решить это проблему гораздо проще и дешевле). Разница между искусственным 0 и естественным достигает при перекосах и обрывах фаз от 0,5 до 10 в. Проверено опытным путём.

Важным условием для такого «опорного заземления» — это возможность пропустить через себя ток величиной достаточной для срабатывания защиты, при этом возникшее напряжение между «опорным заземлением» и «естественной землёй» не должно превысить опасных значений, к примеру 30 вольт.

Где найти такое опорное заземление в квартире — большой вопрос. Трубы отопления, водопровода и газа откидываем по причинам описанным выше. Вариант подключения к СУП в санузле, но неизвестно как это СУП соединено между собой и другими квартирами, опасно. Получается, единственный вариант — это арматура в стенах и потолке, сваренная между собой и имеющая сопротивление с настоящей землёй менее 1 кОм. Хотя в кирпичном или деревянном здании и этого может не быть.

Но если есть, тогда можно провести испытание её «качества». Взять вольтметр и измерить напряжение между нулём в розетке и арматурой в стенке. Если оно не равно нулю, а к примеру 3 и более вольт, закоротив ноль и арматуру через предохранитель на 100мА, этот предохранитель должен сгореть (при условии, что сопротивление между арматурой и настоящей землёй маленькое). Либо если напряжение между нулём и арматурой близко к нулю, подцепить последовательно в цепь батарейку типа «крона», добавив 9 вольт.

Сгоревший предохранитель — как индикатор пройденного теста «опорного заземления».

Для теоретического эксперимента понадобится четырёхполюсное электромеханическое УЗО или Диф автомат типа AC на ток утечки 30мА, как самое распространённое.

Ориентируясь на то, что схема защиты работает относительно «опорного заземления» рисую первую схему.

image

Схема схожа со схемой подключения УЗО в двухпроводной сети, с той лишь разницей, что «защитный» нулевой проводник взятый с корпуса щитка у нас так же подключен через третий контакт УЗО, но снизу. Ситуации:

А. Ноль в щитке целый. При возникновении токов утечки с корпуса эл.прибора на фазу или ноль, УЗО заметит разницу токов втекающих и вытекающих, защита сработает.

Б. Ноль не приходит на корпус щитка (обрыв). На корпусе напряжение относительно «опорного заземления». Если ток пойдёт по цепочке «защитный ноль — корпус — тело — пол» УЗО отреагирует и на эту утечку.

А если нужно, что бы УЗО не срабатывало на токи утечки с нуля на корпус или с фазы на корпус? Садим защитный ноль на верхние контакты УЗО. Теперь токи суммируются и вычитаются по другому.

А. Ноль в щитке целый. При возникновении токов утечки с корпуса эл.прибора на фазу или ноль УЗО не заметит разницу токов втекающих и вытекающих, УЗО не сработает.

Б. Ноль не приходит на корпус щитка (обрыв). На корпусе напряжение относительно «опорного заземления». Если ток пойдёт по цепочке «защитный ноль — корпус — тело — пол» УЗО отреагирует на эту утечку.

image

Защита при обрыве нуля

Четвёртый контакт УЗО можно использовать как детектор обрыва нуля. Опять же используя наше «опорное заземление». Как только в щитке на защитном нулевом проводе появится напряжение более 30 вольт относительно «опорного заземления» появится ток утечки и защита сработает.

Комментарий из интернета

Кстати, в далеком 2000г. в бутике на Подоле в Киеве (дореволюционный дом, воздушный ввод) мне удалось заставить УЗО реагировать на обрыв ноля. Я поставил между нолем и чистой землей (сам сделал контур) резистор 1кОм, при нормальном напряжении на ноле 5В утечка с ноля 5мА, при обрыве ноля на нем хотя бы 50В, утечка 50мА, УЗО отключалось.

Минус резистора — ток в несколько миллиампер при малых напряжениях между землёй и нулём, то есть может всегда висеть 10-15мА, что не есть хорошо для всего остального что подключено к УЗО которое может сработать например при 17-20мА.

Варистор имеет не совсем хорошую ВАХ, сопротивление при пробитии падает не резко, в добавок если даже и ограничить ток резистором, всё равно у него ограниченное количество срабатываний.

Газовые разрядники от 75вольт, это слишком много. Сопротивление зависит от приложенного напряжения.

Гораздо проще собрать схему на диодах, стабилитроне и транзисторе. Можно и на двух мощных стабилитронах, но их сложнее найти в продаже.

Условие работы схемы:

image

  1. Минимальное напряжение стабилизации стабилитрона Uст.мин должно быть больше чем амплитудное значение напряжения между «опорной землёй» и защитным нулём.
  2. Коэффициент усиления транзистора h21э должен быть не более 20 — 40. Что бы единицы микроампер на базе не превратились в десятки миллиампер на коллекторе. Транзистор обычный биполярный.
  3. Резистор ограничивающий ток схемы подбирается из условия, что при 30V между «опорной землёй» и защитным нулём должен протекать ток 30мА.

Когда напряжение между «опорной землёй» и защитным нулём меньше Uст.мин ток через схему составляет единицы микроампер. При увеличении напряжения до 30 и более вольт, ток через схему резко увеличится до нужных нам 30 и более миллиампер.

Всё вместе будет выглядеть так

image

image

Если без паяния схем, то можно поставить простую защиту от перенапряжения между рабочим нулём и фазой. При отгорании нуля в щитке и появлении более 250 вольт вместо 220, через четвёртый контакт УЗО потечёт ток, защита так же сработает.

image

Вариаций схем на эту тему наверно можно придумать много.

Учитывая что в продаже есть электронные реле напряжения или аналогичные механические расцепители для УЗО и автоматов от производителей электротехнической продукции, такое «кулибинство» возможно свести на нет или до минимума. Главное знать, что такие аппараты защиты существуют и иметь общее представление где и как их применяют.

P.S. Важное замечание с обсуждения на одном форуме

что будет, если ты применишь 4-х полюсное УЗО, которое соединяет через свои контакты батарею с нулём в щите, когда на батарее, но не твоей, а соседской, появится желающий использовать её в виде нуля? Это к тому, что тогда через контакты твоего УЗО потечёт куда больший ток, чем предполагалось изначально

Здесь важен такой момент, что «защитный ноль» на корпусе может быть электрически связан с водопроводными трубами, например при соединении стиральной машины или водонагревателя шлангами к трубам (не обязательно металлическими). По защитному нулю, через корпус эл.прибора по шлангам на батарею пойдёт уравнивающий ток, УЗО сработает, но и токи даже в единицы миллиампер — не есть хорошо. Плюс ситуации, описанные в начале статьи.

Для лучшего понимания как работают устройства защиты по дифференциальному току и их необычного применения, крайне рекомендую к просмотру цикл видео «Устройства дифференциального тока против обрыва, нагрева и дуги» автора ID — Vladimir Melnikov (на хабре Vladimir Melnikov).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *