Физика. 10 класс
Для описания электростатического поля нужно знать как модуль, так и направление напряжённости в каждой его точке. Чтобы наглядно отображать распределение поля в пространстве, Фарадей в 1845 г. предложил способ изображения электрических полей в виде воображаемых линий. Их назвали линиями напряжённости или силовыми линиями.
Линии напряжённости — воображаемые направленные линии, касательные к которым в каждой точке поля совпадают по направлению с напряжённостью электростатического поля в той же точке (т. е. с направлением электростатической силы, действующей на положительный заряд) (рис. 111).
Очевидно, что через любую точку поля, в которой , можно провести одну и только одну линию напряжённости. В каждой такой точке напряжённость имеет вполне определённое направление.
На рисунке 112, а изображены линии напряжённости полей, образованных зарядами, равномерно распределёнными по поверхности уединённых проводящих шариков. Направление каждой стрелки на рисунке 112, а совпадает с направлением напряжённости поля. Линии напряжённости в первом случае направлены от положительного заряда в бесконечность, а во втором — из бесконечности к отрицательному заряду и оканчиваются на нём. В электростатическом поле линии напряжённости начинаются и оканчиваются на электрических зарядах даже тогда, когда одним своим концом уходят в бесконечность, где и находятся недостающие на рисунке заряды.
На рисунке 112, б изображены линии напряжённости электростатического поля, образованного двумя разноимёнными зарядами, модули которых одинаковые, находящимися на проводящих шариках. Стрелки показывают направления напряжённости поля в различных его точках.
На рисунке 112, в представлены линии напряжённости электростатического поля двух одинаково заряженных шариков.
На рисунке 112, г изображено поле, созданное зарядами противоположных знаков, модули которых одинаковые, находящимися на двух плоских металлических пластинах, длина которых много больше расстояния между ними. Линии напряжённости такого поля параллельны друг другу за исключением пространства вблизи краёв пластин и вне области их перекрытия. Электростатическое поле в центральной области между разноимённо заряженными металлическими пластинами является примером однородного поля.
Однородное электростатическое поле — электростатическое поле, напряжённость которого во всех точках пространства одинакова.
Электростатические поля, изображённые на рисунках 112, а, б, в, являются неоднородными, так как или модуль, или направление (или и то, и другое) напряжённости в разных точках поля отличается.
Линии напряжённости электростатического поля не прерываются в пространстве (при отсутствии в нём других зарядов), никогда не пересекаются и не касаются друг друга.
Чтобы линии напряжённости отображали не только направление, но и модуль напряжённости поля, на рисунках их условились проводить с определённой густотой. Линии напряжённости идут гуще там, где модуль напряжённости поля больше, и реже там, где он меньше. В однородном электростатическом поле густота линий напряжённости не меняется. Картину линий напряжённости принято строить так, чтобы она, по возможности, отображала симметрию изображаемого электростатического поля. Число линий напряжённости, началом или концом которых служит данный заряд, пропорционально значению этого заряда (рис. 113).
1. Что называют линиями напряжённости электростатического поля?
2. Каковы особенности линий напряжённости электростатического поля?
3. Как направлены линии напряжённости электростатического поля заряда в зависимости от его знака? Системы двух зарядов (одноимённых и разноимённых)?
4. Какое электростатическое поле называют однородным? Приведите примеры.
Силовые линии электрического поля
Электрическое поле изображают с помощью силовых линий.
Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.
Свойства силовых линий электрического поля
- Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.
- Силовые линии электрического поля всегда перпендикулярны поверхности проводника.
- Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).
Как направлены силовые линии электрического поля
Опытным путём установлен закон Кулона:
закон Кулона
сила взаимодействия двух точечных неподвижных зарядов в вакууме пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль прямой, проходящей через эти заряды:
Здесь `F` — модуль силы, `k` — коэффициент пропорциональности, зависящий от выбора системы единиц, `q_1` и `q_2` — величины зарядов, `r` — расстояние между зарядами.
Обратите внимание, что нарушение в конкретных условиях опыта точечности зарядов, их неподвижности или нахождение зарядов не в вакууме может привести к невыполнению соотношения (2.1).
Основной единицей в любой системе единиц называется единица, для которой существует установленная по договорённости принципиальная возможность создания эталона этой единицы. Напомним, что основными единицами системы СИ являются единицы длины метр (м), массы килограмм (кг), времени секунда (с), силы электрического тока ампер (А), термодинамической температуры кельвин (К), количества вещества моль (моль), силы света кандела (кд). Остальные единицы в системе СИ производные, их размерность (выраженная через основные или другие единицы системы) даётся через определения и физические законы, устанавливающие связь между различными физическими величинами. Единицей заряда в системе СИ является кулон (Кл) – заряд, проходящий за `1` с через поперечное сечение проводника при силе тока `1` А.
Найдём размерность (обозначается квадратными скобками) коэффициента `k` в формуле (2.1) закона Кулона. Для размерностей физических величин в (2.1) выполняется соотношение, аналогичное соотношению (2.1) между самими величинами: $$ \left[F\right]=\left[k\right]_\right]\left[_\right]><\left[
Запоминать выражение для размерности `k` необязательно, но уметь выводить, используя (2.1), надо.
Приведём значение коэффициента `k` в (2.1) для системы СИ:
Заметим, что вместо выражения для размерности после численного значения можно писать «ед. СИ» (единицы СИ). Иногда в системе СИ коэффициент `k` в (2.1) записывают в форме $$ k=<4\pi <\epsilon >_>>$$.
Здесь $$ _=\mathrm·^$$ ед. СИ называется электрической постоянной.
Найдём напряжённость электрического поля, созданного точечным зарядом `Q` на расстоянии `r` от заряда. Для этого поместим мысленно на расстоянии `r` от `Q` пробный заряд `q`. По закону Кулона на `q` действует сила $$ F=\left|\overrightarrow\right|=k\left|Q\right|\left|q\right|/^$$. Напряжённость поля (созданного зарядом `Q`) в месте расположения `q` равна `vecE=vecF//q`. Отсюда `E=|vecE|=|vecF|//|q|`. С учётом выражения для `F` напряженность поля точечного заряда `Q` на расстоянии `r` от него
Рис. 2.1 | Рис. 2.2 |
Электрическое поле
Мыслителям прошлого трудно было принять концепцию «действия на расстоянии». И правда, как может один заряд действовать на другой, если они не соприкасаются?
Даже Ньютону, применившему эту идею в теории всемирного тяготения, нелегко было свыкнуться с нею. Как мы видели, однако, эти трудности можно преодолеть с помощью понятия поля, которое ввел английский ученый Майкл Фарадей (1791-1867). Согласно Фарадею, от каждого заряда исходит электрическое поле, пронизывающее все пространство. Когда к одному заряду подносят другой, он испытывает действие силы, которая обусловлена электрическим полем первого заряда. Электрическое поле в точке, где находится второй заряд, влияет непосредственно на этот заряд, создавая действующую на него силу. Следует подчеркнуть, что поле не является некой разновидностью вещества; правильнее сказать, это — чрезвычайно полезная концепция.
Поле, создаваемое одним или несколькими зарядами, можно исследовать с помощью небольшого положительного пробного заряда, измеряя действующую на него силу. Под пробным зарядом мы понимаем достаточно малый заряд, собственное поле которого не меняет существенно распределения остальных зарядов, создающих исследуемое поле. Силы, действующие на малый пробный заряд q в окрестности уединенного положительного заряда Q, показаны на рис. 22.13. Сила в точке b меньше, чем в a, из-за большего расстояния между зарядами (закон Кулона); в точке с сила еще меньше. Во всех случаях сила направлена радиально от заряда Q.
По определению напряженность электрического поля, (или просто электрическое поле) E в любой точке пространства равна отношению силы F, действующей на малый положительный пробный заряд q, к величине этого заряда:
Из вышеописанного определения следует, что направление напряженности электрического поля в любой точке пространства совпадает с направлением силы, действующей в этой точке на положительный пробный заряд. Напряженность электрического поля представляет собой силу, действующую на единицу заряда; она измеряется в ньютонах на кулон (Н/Кл).
Более строго Е определяется как предел отношения F/q при q, стремящемся к нулю.
Напряженность электрического поля Е определяется через отношение F/q, чтобы исключить зависимость поля Е от величины пробного заряда q. Иначе говоря, Е учитывает только те заряды, которые создают рассматриваемое в данной точке электрическое поле. Поскольку Е — векторная величина, электрическое поле является векторным полем.
Силовые линии
Коль скоро электрическое поле является векторным, его можно изображать в различных точках стрелками, как это сделано на рис. 22.13. Направления векторов Еа, Еb, Ес совпадали бы с направлениями показанных на этом рисунке сил и лишь длина их была бы уже иной в результате деления на q. Отношение длин векторов Еа, Еb, Ес сохранится прежним, так как мы делим на один и тот же заряд. Однако изображать электрическое поле таким образом неудобно, поскольку при большом числе точек весь рисунок будет испещрен стрелками. Поэтому пользуются другим способом изображения поля-методом силовых линий.
Для наглядного представления электрического поля его изображают семейством линий, указывающих направление напряженности поля в каждой точке пространства.
Эти так называемые силовые линии проводятся так, чтобы указывать направление силы, действующей в данном поле на положительный пробный заряд. Силовые линии точечного положительного заряда показаны на рис. 22.20, а, отрицательного — на рис. 22.20,6.
В первом случае линии радиально расходятся от заряда, во втором они радиально сходятся к заряду. Именно в таком направлении будут действовать силы на положительный пробный заряд. Конечно, силовые линии можно нанести и в промежутках между изображенными на рисунке. Но мы условимся наносить силовые линии с таким расчетом, чтобы число линий, исходящих от положительного заряда или заканчивающихся на отрицательном заряде, было пропорционально величине этого заряда.
Обратим внимание на то, что вблизи заряда, где сила максимальна, линии расположены более тесно. Это общее свойство силовых линий: чем теснее расположены силовые линии, тем сильнее электрическое поле в этой области. Вообще говоря, можно всегда изображать силовые линии таким образом, чтобы число линий, пересекающих единичную площадку, перпендикулярную направлению поля Е, было пропорционально напряженности электрического поля. Например, для уединенного точечного заряда (рис. 22.20) напряженность электрического поля убывает как 1/r 2 ; так же будет уменьшаться с расстоянием и число равномерно распределенных силовых линий, пересекающих единичную площадку: ведь общее число силовых линий остается постоянным, а площадь поверхности, через которую они проходят, растет как 4πr 2 (поверхность сферы радиусом г). Соответственно число силовых линий на единицу площади пропорционально 1/r 2 .
На рис. 22.21, а показаны силовые линии поля, создаваемого двумя зарядами противоположных знаков. Здесь силовые линии искривлены и направлены от положительного заряда к отрицательному. Поле в любой точке направлено по касательной к силовой линии, как показано стрелкой в точке Р.
На рис. 22.21,6 и в показаны силовые линии электрического поля двух положительных зарядов и поля между двумя параллельными противоположно заряженными пластинами. Заметим, что силовые линии поля между пластинами параллельны и расположены на равном расстоянии друг от друга, исключая область вблизи краев.
Таким образом, в центральной области напряженность электрического поля во всех точках одинакова, и мы можем написать:
Е = const (между близко расположенными параллельными пластинами).
Хотя вблизи краев это не так (силовые линии изгибаются), часто этим можно пренебречь, особенно если расстояние между пластинами мало по сравнению с их размерами. [Сравните этот результат со случаем уединенного точечного заряда, где поле изменяется обратно пропорционально квадрату расстояния].
Итак, силовые линии обладают следующими свойствами:
1. Силовые линии указывают направление напряженности электрического поля: в любой точке напряженность поля направлена по касательной к силовой линии.
2. Силовые линии проводятся так, чтобы напряженность электрического поля Е была пропорциональна числу линий, проходящих через единичную площадку, перпендикулярную линиям.
3. Силовые линии начинаются только на положительных зарядах и заканчиваются только на отрицательных зарядах; число линий, выходящих из заряда или входящих в него, пропорционально величине заряда.
Можно также сказать, что силовая линия электрического поля — это траектория, по которой следовал бы помещенный в поле малый пробный заряд. (Строго говоря, это верно лишь в том случае, если пробный заряд не обладает инерцией или движется медленно, например вследствие трения.)
Силовые линии никогда не пересекаются. (Если бы они пересекались, это означало бы, что в одной и той же точке напряженность электрического поля имеет два различных направления, что лишено смысла.)
Электрические поля и проводники
В статическом случае (т.е. когда заряды покоятся) электрическое поле внутри хорошего проводника отсутствует. Если бы в проводнике существовало электрическое поле, то на внутренние свободные электроны действовала бы сила, вследствие чего электроны пришли бы в движение и двигались до тех пор, пока не заняли бы такое положение, при котором, напряженность электрического поля, а стало быть, и действующая на них сила обратились бы в нуль. Из этого рассуждения вытекают любопытные следствия. В частности, если проводник обладает результирующим зарядом, то этот заряд распределяется по внешней поверхности проводника. Этот факт можно объяснить с иной точки зрения. Если, например, проводник заряжен отрицательно, то мы легко можем представить, что отрицательные заряды отталкивают друг друга и устремляются к поверхности проводника, чтобы расположиться как можно дальше друг от друга. Другое следствие состоит в следующем. Пусть положительный заряд Q помещен в центр полого изолированного проводника в форме сферической оболочки (рис. 22.22).
Поскольку внутри проводника электрического поля быть не может, силовые линии, идущие от положительного заряда, должны заканчиваться на отрицательных зарядах на внутренней поверхности металлической сферы. В результате на внутренней поверхности сферического проводника будет индуцирован соответствующий отрицательный заряд -Q, а равный по величине положительный заряд +Q распределится по внешней поверхности сферы (поскольку в целом оболочка нейтральна). Таким образом, хотя внутри проводника электрическое поле отсутствует, снаружи сферы существует электрическое поле (рис. 22.22), как если бы металлической сферы вовсе не было.
С этим связано также и то обстоятельство, что силовые линии электрического поля всегда перпендикулярны поверхности проводника. Действительно, если бы вектор напряженности электрического поля Е имел компоненту, параллельную поверхности проводника, то электроны под действием силы двигались бы до тех пор, пока не заняли положение, в котором на них не действует сила, т. е. пока вектор напряженности электрического поля не будет перпендикулярен поверхности.
Все сказанное относится только к проводникам. В изоляторах, у которых нет свободных электронов, может существовать электрическое поле и силовые линии не обязательно перпендикулярны поверхности.
Продолжение следует. Коротко о следующей публикации:
— Электрические диполи.
— Расчет напряженности электрического поля Е.
— Движение заряженной частицы в электрическом поле.