Пайка и Сварка
Пайка как основной метод соединения металлов происходит по причине капиллярного действия расплавленных металлов. Процессы пайки можно подразделять на две категории: с помощью твердых и мягких припоев. Говоря о пайке твердыми припоями, подразумевают использование припоев, плавящихся выше 540 С, мягкими — ниже этой температуры.
При работе твердыми припоями при нагреве паяемых металлов расстояние между их молекулами увеличивается, между ними появляются микроскопические зазоры. Припой получает возможность протечь между соединяемыми металлами и в зазоры между молекулами. При охлаждении металлов и припоя две детали остаются соединенными вместе. Часто сплавы, используемые в качестве припоев, содержат в своем составе спаиваемый металл, чтобы соединение получилось практически незаметным.
Мягкие припои производятся на основе «белых металлов»: олова, свинца и висмута. Температура пайки недостаточна для «разрыхления» молекул. Сила их сцепления с поверхностью зависит от способности «приплавляться» к микроскопическим неровностям на металле. Так как сила сцепления мягких припоев обусловлена сцеплением с поверхностью, швы не заполняются ими заподлицо и остаются незаметными.
Успех пайки зависит от пяти основных этапов:
- Подгонка: все спаиваемые поверхности должны быть тщательно подогнаны друг к другу. Припой не предназначен для заполнения брешей.
- Чистота: успешное соединение деталей требует безупречно чистой поверхности, иначе припой не растечется должным образом.
- Флюс: необходимо некоторое вещество, которое не даст кислороду прореагировать с поверхностью металла и загрязнить ее оксидами.
- Нанесение припоя: на место стыка необходимо наносить подходящий припой и в должном количестве.
- Нагрев: соединяемые металлы нагреваются лишь чуть выше температуры растекания применяемого припоя.
Осваивая лазерную сварку, ювелир должен понимать некоторые основные принципы процесса сварки, в частности, отличие от пайки. Основное отличие процесса сварки от процесса пайки в том, что при сварке материал, подлежащий свариванию, тоже плавится. При плавке основного материала для сваривания важно проникнуть в шов с правильной энергией луча и ее распределением, чтобы должным образом соединить две детали. Используемые в нашей промышленности лазеры имеют подобные настраиваемые возможности, управляющие различными аспектами совокупной энергии лазера и способом ее подачи.
Первое, что должен осуществить лазерный луч — это физическое проникновение в сварочный шов. Лазер должен соединить вместе два фрагмента металла. Для этого могут потребоваться разные характеристики энергии. Например, трехмиллиметровый платиновый ободок кольца требует для сварки энергию, отличную от той, которая нужна для застежки из желтого золота 18 кт. Прохождение пучка в сварочный шов называется проникновением. Проникновение достигается управлением физической силой лазерного пучка, обычно регулируемой в доступных на рынке лазерных установках через напряжение. Напряжение регулирует силу фотонов (материи) в световом пучке. Напряжение — это лишь одна из характеристик выходного лазерного пучка. Лазер должен обладать достаточной энергией для достижения пучком места сварки, а для этого нужно преодолеть сопротивление металла вокруг сварочного шва и проникнуть сквозь сопротивляющийся металл для доступа к внутренним поверхностям шва.
После проникновения к месту действия, лазерный пучок должен сохранять достаточную мощность для осуществления собственно сварочного действия (плавки окружающего металла). Другая управляемая характеристика мощности лазера — это продолжительность облучения металла в течение одного импульса (продолжительность импульса). Она регулируется на большинстве установок отрезками, измеряемыми и выражаемыми в милисекундах. Металл, по мере облучения лазером, нагревается до точки плавления и растекается по шву, заполняя его и соединяя фрагменты способом, не оставляющим шов. Продолжительность импульса можно использовать для проникновения через плавку, вместо силового проникновения, достигаемого через большое напряжение. Однако, более продолжительные импульсы могут выжечь некоторые металлы, оставляя ямки и делая их более хрупкими. Увеличение продолжительности импульса делает область плавки глубже и шире.
Лазерный пучок для проникновения требует иных аспектов мощности, чем для плавки. Напряжение и продолжительность импульса прямо пропорциональны величине мощности (измеряемой в джоулях) лазерного пучка, то есть увеличение напряжения, либо продолжительности импульса увеличивают входную мощность пучка, а уменьшение любого из этих параметров уменьшает общую мощность пучка.
Что делает лазер лазером?
Когерентный свет может быть сфокусирован намного точнее некогерентного (рассеянного), что позволяет обеспечивать очень высокую концентрацию световой энергии на очень малой площади. Эта энергия, отнесенная к единице площади, в 1000 раз выше, чем энергия на поверхности солнца.
Высокая температура, достигаемая при концентрации энергии, достаточна для локального разогрева металла до точки его плавления и выше.
Фактически на локальное плавление металла затрачивается очень малая часть энергии лазера. Лазер – идеальный инструмент для работы со всеми видами изделий из драгоценных металлов и сплавов, включая изделия с драгоценными вставками, чувствительными к температурным воздействиям.
Лазер, используемый в ювелирной промышленности, является твердотельным лазером и функционирует по классической схеме. Конденсаторная батарея используется для накопления энергии, которая расходуется на генерацию сильного светового импульса в лампе накачки. Этот свет попадает на Nd YAG-кристалл. Кристалл преобразовывает белый свет от лампы накачки в когерентный лазерный луч, который многократно умножается в резонаторе (кристалл, отражающее зеркало, отклоняющее зеркало). Процесс управляется бортовым микрокомпьютером. Высокая температура, возникающая в процессе генерации луча, поглощается деионизированной водой, охлаждаемой в дальнейшем в воздушно-водном теплообменнике.
Через систему линз лазерный луч попадает в рабочую камеру. Процесс сварки контролируется непосредственно через стереомикроскоп.
Чем лучше настроены все узлы лазера, тем выше качество и результат сварки и выше ресурс работы машины.
Энергия лазерного луча расплавляет металл в точке его контакта с металлом. Размер пятна и глубина проникновения луча в металл зависят от трёх основных параметров:
- Напряжение (мощность) – чем выше, тем глубже проникновение;
- Время (длинна) импульса – чем дольше, тем шире и глубже, тем больше расплавленного металла;
- Диаметр луча – чем больше, тем больше площадь сварки (пятна) но и ниже концентрация энергии на единице площади поверхности.
Для различных металлов эти параметры определяются в зависимости от их физико-химических свойств. Например, низкопробные золотые сплавы (белого и желтого цвета) просто и легко свариваются.
Высокопробные сплавы желтого золота (22К и выше), серебряные и медные сплавы свариваются намного хуже из за высокой отражательной способности и высокой теплопроводности.
Сварочный лазер должен иметь качественный (хорошо отьюстированный) луч. В этом случае результат сварки будет оптимальным, даже тогда, когда область сварки выходит за фокальную плоскость оптических приборов лазера.
Точная юстировка (настройка) оптики на всех участках прохождения луча улучшает его качественные параметры. Для достижения наилучшего результата при производстве лазера необходимо провести предварительные юстировочные работы.
Следует принять во внимание, что некоторые так называемые «производители лазеров» просто покупают отдельные компоненты различных поставщиков и механически их собирают. Весьма часто на их производственных участках изготавливаются только корпуса приборов.
Только отличная юстировка луча обеспечивает высококачественный результат и высокий ресурс работы.
Пайка и сварка – сравнение процессов.
Главная цель разработки лазеров для использования в ювелирной промышленности состояла в том, чтобы сэкономить время, уменьшить уровень брака и улучшить качество производимых изделий. Весьма часто, готовые ювелирные изделия отбраковываются из за дефектов, которые не могут быть устранены традиционными технологическими методами.
При пайке различия в цвете и твердости металла припоя ухудшают дизайн изделия и его механические свойства. Кроме того, после этой операции необходимо проводить отбеливание изделия с последующей полировкой.
При сварке нет необходимости в применении припоя. В этом случае используется присадочная проволока из металла, аналогичного металлу изделия, и нет разницы ни в цвете, ни в твердости. Нет так же необходимости отбеливания изделия с его последующей полировкой. Все эти аспекты делают лазер абсолютно необходимым инструментом для ремонта ювелирных изделий.
Элементы изделий, чувствительные к высоким температурам, такие, например, как ювелирные вставки (драгоценные и другие камни), а также пружинные элементы могут быть повреждены при ремонтных операциях, связанных с пайкой. Поэтому эти элементы предварительно должны быть удалены. Эти процедуры достаточно трудоёмки. Кроме того, камни, иногда достаточно дорогие, могут быть повреждены в результате раскрепки изделия. Пружинные элементы могут потерять свои механические свойства в результате отжига, при нагреве изделия под пайку. После пайки эти элементы необходимо установить на изделие – закрепить вновь вставки или завести пружины.
В случае лазерной подварки дефектов нет необходимости выкреплять камни и демонтировать пружинные элементы, так как высокотемпературное воздействие энергии лазерного луча сконцентрировано только в месте заварки дефекта и не нагревает всё изделие. Соответственно не нужно вновь крепить камни и заводить пружины.
В связи с этим лазер имеет существенное преимущество перед всеми остальными видами сборки, при этом значительно сокращается операционное время сборки, поскольку не требуется использование открытого пламени для пайки и целого ряда промежуточных технологических операций и приспособлений для их проведения.
Типовое применение лазера в ювелирной промышленности.
- Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава.
- Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава для изделий со вставками из драгоценных камней и элементов, чувствительных к нагреву.
- Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава для изделий с пружинными элементами. Без отжига последних.
- Сборка или ремонт уже полированных частей.
- Сборка или ремонт изделий с закрепленными вставками из драгоценных камней, чувствительных к нагреву.
- Все виды монтировочных работ без применения фиксирующих приспособлений (биндеры, фиксирующие пинцеты и т.д.)
- Ремонт антикварных изделий без снятия/порчи патины.
- Ремонт дефектов закрепки – крапанов и других видов кастов без предварительной раскрепки камней, включая драгоценные.
- Сборка трудоемких изделий с большим количеством мелких элементов без предварительной монтировки в гипсе.
- Сборка браслетов.
- Ремонт и сборка полых изделий с толщиной стенки менее 0,2 мм.
- Сварка шинок колец при операции уменьшения размера.
- Удаление гравировки методом подварки.
- Соединение различных металлов (золото/платина, золото/титан и т.д.)
- Сборка и ремонт элементов часов, в том числе из титана и нержавеющих сталей.
- Ремонт матриц и пуансонов для штамповки.
Пайка металла
Пайкой металла называется процесс получения неразъемного соединения металлов посредством расплавления более легкоплавкого присадочного металла — припоя, растекающегося и заполняющего зазор между соединяемыми изделиями.
Пайка отличается от сварки тем, что основной металл не плавится, а нагревается лишь до температуры расплавления припоя. Температура плавления припоя должна быть ниже температуры плавления металла.
Различают высокотемпературную и низкотемпературную пайку. Высокотемпературная пайка с использованием припоя с температурой плавления более 550°С (например, серебряные, медно-цинковые или медно-фосфоритовые припои).
Низкотемпературная пайка с использованием припоя с температурой плавления ниже 550°С (например, оловянно-свинцовые припои).
Припои для пайки
Серебряные припои — применяют при пайке черных и цветных металлов, кроме алюминия и цинка.
Медно-цинковые припои — для пайки стали, чугуна, меди, бронзы и никеля.
Медно-фосфоритовые припои — заменители припоев на основе серебра и низкотемпературных припоев при пайке меди, латуни, бронзы.
Подготовка к пайке и установка деталей
Очистите детали в месте спая от грязи, окислов, окалины и жира механическим или химическим путем.
Закрепите детали в кондукторе или приспособлении так, чтобы место под пайку было в горизонтальной плоскости и в зоне действия вытяжной вентиляции.
Установите необходимый зазор и величину перекрытия деталей (при нахлесточном соединении).
Нагрев и обработка поверхности флюсом
Отрегулируйте нормальное пламя.
Нагрейте место спая факелом пламени горелки до температуры растекания припоя и нанести на место пайки флюс.
Слегка разогрейте пламенем припой и покрыть его флюсом (окунанием или присыпкой).
Пайка деталей
Внесите в спай припой после расплавления флюса и расплавить припой за счет теплоты нагретых деталей путем касания прутком припоя края деталей. Припой не должен плавиться в пламени.
Произведите пайку деталей, расплавляя пруток трением его о нагретую поверхность, с периодическим окунанием конца припоя во флюс до заполнения зазора и образования галтели (шва).
Окончание пайки
Отведите пламя в сторону и обеспечьте медленное охлаждение паяных соединений. Цветные металлы после пайки могут охлаждаться в воде.
Очистить шов от флюса тщательной промывкой паяного соединения в теплой воде. Флюс, состоящий из буры, удаляется травлением в 10%-ном растворе серной кислоты с последующей промывкой в воде.
Произвести правку изделия и термообработку паяного соединения, если в этом имеется необходимость.
Газопламенная пайка металлов
Пайка металлов технологический процесс получения неразъемных соединений металлов нагревом до расплавления более легкоплавкого присадочного металла — припоя, заполняющего зазор между соединяемыми деталями. Основной металл при пайке не плавится, а нагревается до температуры расплавления припоя.
В качестве источников теплоты при пайке используют газокислородное и газовоздушное пламя, электронагрев, индукционный нагрев, паяльники. К преимуществам пайки относятся отсутствие расплавления и незначительный нагрев основного металла. Эти преимущества позволяют получать высококачественные соединения не только однородных металлов, но и разнородных металлов и сплавов.
Согласно ГОСТ 17325-79, различают две основных вида пайки:
- высокотемпературную
- низкотемпературную
Температура плавления припоев для высокотемпературной — свыше 550°С, а для низкотемпературной — ниже 550°С. В основу высокотемпературных припоев входят медь (Сu), цинк (Zn), серебро (Ag), а низкотемпературных — свинец (Pb), олово (Sn), сурьма (Sb). Пайке поддаются чугун, низкоуглеродистая и легированная сталь, медь , никель, алюминий и их сплавы и др.
Источником нагрева при газопламенной пайке является сварочное пламя. В качестве основного инструмента используют сварочную горелку. При пайке крупногабаритных изделий применяют многопламенные горелки. Припои выпускают в виде проволоки, прутков, полос, порошковой проволоки, порошков и пасты. Для получения надежного паяного соединения припои должны удовлетворять следующим требованиям:
- температура плавления припоя должна быть ниже температуры плавления основного металла;
- расплавленный припой в сочетании с флюсом должен быть жидкотекуч, хорошо растекаться, проникая в щели зазора, и хорошо смачивать металл;
- припой и металл должны взаимно диффундировать и образовывать сплав;
- припой должен обладать одинаковой или более высокой, чем основной металл, коррозионной стойкостью;
- припой должен удовлетворять требованиям, предъявляемым к внешнему виду изделий, и не содержать дорогих и дефицитных компонентов.
Все припои для высокотемпературной пайки можно разбить на следующие группы:
- медные;
- медно-цинковые;
- серебряные;
- медно-фосфористые.
Медные припои применяют для пайки стали преимущественно в печах с защитной атмосферой.
Медно-цинковые — при пайке стали, чугуна, меди, бронзы и никеля. Лучшие результаты дает припой марки ЛОК 62-06-04, содержащий 60-63% Сu; 0,3-0,4% Sn; 0,4-0,6% Si, остальное — цинк (Zn). Температура плавления припоя 905°С, предел прочности 450 МПа.
Серебряные припои можно применять при пайке всех черных и цветных металлов, кроме алюминия и цинка, имеющих более низкую температуру плавления, чем припой. Температура плавления серебряных припоев 720- 870°С. В зависимости от содержания серебра серебряные припои выпускаются марок от ПСр10 до ПСр70.
Медно-фосфористые припои находят широкое применение в электропромышленности. Их используют только для пайки меди и латуни. Припои для низкотемпературной пайки готовят на основе оловянно-свинцовых сплавов различного состава. В зависимости от содержания Sn используют припои марок от ПОС 90 (89-90% Sn) до ПОС 18 (17-18% Sn). Для низкотемпературной пайки применяют также сурьмянистые припои марки ПОСС-4-6. Для пайки алюминия в качестве низкотемпературных припоев рекомендуются сплавы: 50% Zn, 45% Sn, 5% Аl и 25% Zn, 70% Sn, 5% Al. Паяные низкотемпературными припоями соединения обладают низкой коррозионной стойкостью, что ограничивает их применение для деталей, работающих в воде или влажном воздухе.
Для высокотемпературной пайки алюминия и его сплавов рекомендуются припои с температурой плавления 577°С, содержащие 10-12% Si, 0,7% Fe, остальное — Al, и припой с температурой плавления 525°С состава 28% Cu, 6% Si, 66% Al. При газопламенной пайке применяются флюсы в виде порошков, пасты и газа. Основой большинства флюсов при твердой пайке является бура Na2B4O7. Для усиления действия флюса к буре часто добавляют борную кислоту, благодаря которой флюс становится более густым и вязким, требующим повышения рабочей температуры. Для понижения рабочей температуры флюса, что особенно важно для легкоплавких припоев, вводят хлористый цинк ZnCl2, фтористый калий KF и другие щелочные металлы.
Перед пайкой соединяемые детали тщательно очищают от загрязнений, окалины, оксидов, жира и др. Порошкообразные флюсы насыпают тонким слоем на очищенные кромки, причем часто применяют предварительный подогрев кромок, с тем чтобы частицы флюса плавились, прилипали к металлу и не сдувались пламенем горелки при пайке. Порошкообразный флюс наносят также па конец прутка припоя. Пасты и жидкие растворы наносят на поверхность соединяемых деталей кистью или обмакивают в них припой. При пайке наибольшее применение получили нахлесточные соединения. Зазор между соединяемыми поверхностями должен быть минимальным, а при пайке серебряными припоями — 0,05-0,03 мм. Техника пайки подготовленного соединения сводится к нагреву их до температуры плавления припоя, введения и расплавления припоя. Обычно пайку выполняют нормальным пламенем.
При пайке медно-цинковыми припоями рекомендуется применять пламя с избытком кислорода. Нагрев ведут широкой частью пламени. Для равномерного прогрева горелкой совершают колебательные движения вдоль шва. После того как флюс, предварительно нанесенный на кромки, расплавится и заполнит зазоры, а изделие прогреется до необходимой температуры, начинают вводить припой. Для гарантии полного заполнения зазора припоем горелкой еще некоторое время подогревают место спая после прекращения подачи припоя. После окончания пайки спай должен медленно остывать, остатки флюса после пайки необходимо тщательно удалять. Для полного удаления флюсов изделие погружают в 10%-ный раствор серной кислоты с последующей промывкой водой. Брак, возникший при пайке, может быть исправлен. Для этого необходимо нагреть деталь до температуры плавления припоя, разъединить спаянные элементы, после чего заново зачистить соединяемые поверхности и повторно произвести пайку.
О разнице между пайкой и сваркой
Очень часто путают эти два понятия, что является грубой ошибкой.
На самом деле это абсолютно разные технологии, а зачастую и взаимоисключающие.
Для каждой работы и каждого соединения выбирается своя технология.
Но обо всём по порядку.
Сначала о принципе сварки:
Видов сварок очень много, но самый распространённый среди них — это сварка плавлением.
Основными источниками теплоты при сварке плавлением являются сварочная дуга, газовое пламя, лучевые источники энергии и «джоулево тепло». В этом случае расплавы соединяемых металлов и присадочный металл (электрод/пруток) объединяются в общую сварочную ванну, а при охлаждении происходит кристаллизация расплава в литой сварочный шов.
О пайке:
На практике очень часто все операции, где необходимо термическое соединение металлов, приписывают сварке, что совершено не правильно. Зачастую пайка оказывается обделена вниманием и фактически не рассматривается всерьёз. Видимо многим сразу вспоминается банальная пайка электропроводов. Но на самом деле направление пайки намного обширнее и делится на несколько типов.
Пайка — технологическая операция, применяемая для получения неразъёмного соединения деталей из одинаковых или различных материалов путём введения между этими деталями расплавленного металла (припоя), имеющего более низкую температуру плавления, чем материал соединяемых деталей.
Спаиваемые элементы деталей, а также припой и флюс вводятся в соприкосновение и подвергаются нагреву с температурой выше температуры плавления припоя, но ниже температуры плавления спаиваемых деталей. В результате припой переходит в жидкое состояние и смачивает поверхности деталей. После этого нагрев прекращается и припой переходит в твёрдую фазу, образуя соединение.
Пайка делится на низкотемпературную, около 200 градусов, и высокотемпературную, где используются твёрдые припои и температуры от 300 до 850 градусов.
Низкотемпературную пайку проводят мягкими оловянными припоями, они менее прочны и больше подвержены коррозии, но используются они там, где их свойств с лихвой хватает. Так обычно паяют провода и радиодетали при помощи паяльника.
Для высокотемпературной пайки применяют твёрдые припои, состоящие из различных пропорций таких металлов, как медь, цинк, свинец, а зачастую и с содержанием серебра. Такая пайка применяется на высоконагруженных узлах, где требуется прочность и долговечность, а также герметичность — это климатическое оборудование, работающее под давлением, в агрессивных средах, а также электротехническое и многое другое.
Отдельно хотелось бы отметить ещё одно распространённое заблуждение о том, что соединение пайкой имеет меньшую прочность по сравнению со сварным соединением — это не так, прочность зависит от конкретной детали и ситуации, и зачастую пайка оказывается более стойкой к нагрузкам.
Если максимально упростить всё вышесказанное, то при пайке металл соединяемых деталей не плавится, а только нагревается до высокой температуры, поэтому металлы могут быть разными. Их связывает третий металл — припой. При сварке же плавится как металл деталей, так и присадочный металл, перемешиваясь и образуя единое целое — сварочный шов. И поэтому состав металлов должен быть одинаковым или же очень близким.