Физика. 8 класс.
Источники света. Распространение света. Свет 1 свет – это излучение. Всякое излучение переносит энергию, однако далеко не всякое излучение мы можем воспринимать зрительно. Значит, свет – это видимое излучение. 2 Свет может проходить сквозь прозрачные. Показать больше
Источники света. Распространение света. Свет 1 свет – это излучение. Всякое излучение переносит энергию, однако далеко не всякое излучение мы можем воспринимать зрительно. Значит, свет – это видимое излучение. 2 Свет может проходить сквозь прозрачные тела и вещества. Поэтому свет солнца проникает к нам через атмосферу. 3 Часть света при этом впитывается предметами, и они нагреваются. Темные предметы нагреваются сильнее светлых, соответственно, большая часть света впитывается ими, а отражается меньшая. Поэтому эти предметы выглядят для нас темными. Больше всего света впитывают предметы черного цвета. Именно поэтому летом в жару не стоит одевать черные вещи, потому что можно получить тепловой удар. По этой же причине летом мамы обязательно надевают детям светлые головные уборы, которые нагреваются значительно меньше, чем волосы, имеющие более темный цвет. Источники света Тела, от которых свет исходит, называются источниками света. Различают естественные и искусственные исто Спрятать
- Похожие публикации
- Поделиться
- Код вставки
- Добавить в избранное
- Комментарии
Что является для нас основным источником света,являемся ли мы источниками света,какие ист. света используются в фонарике
Если «для нас» означает «для землян» то Солнце.
Сами мы (люди) не являемся источником света, а только отражаем свет.
В фонарике используются электрические лампочки, а также светодиоды.
Остальные ответы
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
Источники света
Искусственные источники света — технические устройства различной конструкции, преобразовывающие энергию в световое излучение. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.).
Источники света, наиболее часто применяемые для искусственного освещения, делят на три группы — газоразрядные лампы, лампы накаливания и светодиоды. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.
В системах производственного освещения предпочтение отдается газоразрядным лампам. Использование ламп накаливания допускается в случае невозможности или экономической нецелесообразности применения газоразрядных.
Основные характеристики источников света:
· номинальное напряжение питающей сети U, B;
· электрическая мощность W, Вт;
· световой поток Ф, лм;
· световая отдача (отношение светового потока лампы к ее мощности) лм/Вт;
· срок службы t, ч;
· Цветовая температура Tc, К.
Лампы накаливания
Лампа накаливания — источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника (вольфрамовой нити). Эти приборы предназначаются для бытового, местного и специального освещения. Последние, как правило, отличаются внешним видом — цветом и формой колбы. Коэффициент полезного действия (КПД) ламп накаливания составляет около 5-10%, такая доля потребляемой электроэнергии преобразуется в видимый свет, а основная ее часть превращается в тепло. Любые лампы накаливания состоят из одинаковых основных элементов. Но их размеры, форма и размещение могут сильно отличаться, поэтому различные конструкции не похожи друг на друга и имеют разные характеристики.
Существуют лампы, колбы которых наполнены криптоном или аргоном. Криптоновые обычно имеют форму «грибка». Они меньше по размеру, но обеспечивают больший (примерно на 10%) световой поток по сравнению с аргоновыми. Лампы с шаровой колбой предназначены для светильников, служащих декоративными элементами; с колбой в форме трубки — для подсветки зеркал в стенных шкафах, ванных комнатах и т. д. Лампы накаливания имеют световую отдачу от 7 до 17 лм/Вт и срок службы около 1000 часов. Они относятся к источникам света с теплой тональностью, поэтому создают погрешности при передаче сине-голубых, желтых и красных тонов. В интерьере, где требования к цветопередаче достаточно высоки, лучше использовать другие типы ламп. Также не рекомендуется применять лампы накаливания для освещения больших площадей и для создания освещенности, превышающей уровень 1000 Лк, так как при этом выделяется много тепла и помещение «перегревается».
Несмотря на эти ограничения, такие приборы все еще остаются классическим и излюбленным источникам света.
Галогенные лампы накаливания
Лампы накаливания со временем теряют яркость, и происходит это по простой причине: испаряющийся с нити накаливания вольфрам осаждается в виде темного налета на внутренних стенках колбы. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов (йода или брома).
Лампы бывают двух форм: трубчатые — c длинной спиралью, расположенной по оси кварцевой трубки, и капсульные — с компактным телом накала.
Цоколи малогабаритных бытовых галогенных ламп могут быть резьбовыми (тип Е), которые подходят к обычным патронам, и штифтовые (тип G), которые требуют патронов другого типа.
Световая отдача галогенных ламп составляет 14-30 лм/Вт. Они относятся к источникам с теплой тональностью, но спектр их излучения ближе к спектру белого света, чем у ламп накаливания. Благодаря этому прекрасно «передаются» цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека.
Галогенные лампы применяются повсюду. Лампы, имеющие цилиндрическую или свечеобразную колбу и рассчитанные на сетевое напряжение 220В, можно использовать вместо обычных ламп накаливания. Зеркальные лампы, рассчитанные на низкое напряжение, практически незаменимы при акцентированном освещении картин, а также жилых помещений.
Люминесцентные лампы
Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света. В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.
Разрядные лампы высокого давления
Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов.
Два основных разряда высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света — металлогалогенные лампы (МГЛ) , отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, широкий диапазон цветовых температур от 3000 К до 20000К, средний срок службы около 15 000 часов. МГЛ успешно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются натриевые лампы . На сегодняшний день это один самых экономичных источников света благодаря высокой светоотдаче (до 150 Лм/Вт), большому сроку службы и демократичной цене. Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.
Светодиоды
Светодиод — это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии. Великолепные характеристики светодиодов (световая отдача до 120 Лм/Вт, цветопередача Ra=80-85, срок службы до 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике.
Светодиоды применяются в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах и в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях и прожекторах. Так же они применяются в качестве подсветки жидкокристаллических экранов. Последние поколения этих источников света можно встретить в архитектурном и интерьерном освещении, а так же в бытовом и коммерческом.
· Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).
· Длительный срок службы.
· Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.
· Малый угол излучения — также может быть как достоинством, так и недостатком.
· Безопасность — не требуются высокие напряжения.
· Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
· Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.
· Недостаток — высокая цена.
· Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания.
Другие статьи
Цветовая температура
Под цветовой температурой мы понимаем насколько желтый или синий оттенок белого света имеет тот или иной источник света в зависимости от значения в градусах Кельвина. За нейтральную цветовую температуру принято считать диапазон 4000-5000К, теплый свет — 2000-3500К и холодный — 5200-10000К.
Газоразрядные лампы
Продолжая тему энергосберегающего освещения, стоит упомянуть такие распространенные источники света как газоразрядные лампы. К разрядным источникам света относятся: ртутные лампы, натриевые лампы низкого и высокого давления, металлогалогенные, а так же люминесцентные и ксеноновые лампы. Непосредственно, к энергосберегающим лампам относятся: НЛВД, МГЛ и ЛЛ.
Негативные факторы влияющие на выход из строя трековых светильников
Помимо очевидных причин, таких как: некачественные комплектующие (драйвера, светодиодные модули, соединительные элементы и корпуса приборов), есть косвенные причины, о которых мало кто задумывается, а зря, ведь они могут привести не только к выходу из строя осветительного оборудования, но и к более плачевным последствиям, например пожару в магазине.
Источники света. Распространение света.
Восприятие окружающего мира по количеству информации на 90% осуществляется с помощью зрения. Зрение – это способность видеть окружающий мир, процесс зрительного восприятия предмета. Зрительный аппарат состоит из глаз и мозга. Свет от окружающих предметов попадает в глаз, вызывая реакцию его чувствительных элементов (сетчатки). Эта реакция расшифровывается мозгом, и мы видим изображение.
Обладая прекрасным даром – зрением, мы ежедневно восхищаемся красотой и уникальностью окружающего мира. Но можем ли мы детально пронаблюдать такие явления, как испарение, форму падающей капли воды во время дождя, передачу пыльцы растением маленькой пчелке, и т.д. Знание закономерностей световых явлений позволяет конструировать различные оптические приборы, которые находят широкое применение в практической деятельности человека и позволяют нам заглянуть в Микромир.
Еще в глубокой древности ученые интересовались природой света. Что такое свет? Почему одни предметы цветные, а другие белые или черные?
Опытным путем было установлено, что свет нагревает тела, на которые он падает. Следовательно, он передает этим телам энергию. Вам уже известно, что одним из видов теплопередачи является излучение. Свет — это излучение, но лишь та его часть, которая воспринимается глазом. В этой связи свет называют видимым излучением.
Поскольку свет — это излучение, то ему присущи все особенности этого вида теплопередачи. Это значит, что перенос энергии может осуществляться в вакууме, а энергия излучения частично поглощается телами, на которые оно падает. Вследствие этого тела нагреваются.
Тела, от которых исходит свет, являются источниками света.
Главным источником света для нас является Солнце. Оно излучает электромагнитные волны всевозможных частот. Большая их часть никаких зрительных ощущений у человека не вызывает, это невидимые излучения (радио-, инфракрасное и ультрафиолетовое, рентгеновское и гамма-излучения). Зрительные ощущения у человека вызывают электромагнитные волны частотой от 400 до 800 ТГц. При этом излучения разных частот вызывают ощущения разных цветов — от красного до фиолетового. В отличие от человека некоторые насекомые различают ультрафиолетовое излучение, а некоторые виды ящериц — инфракрасное. Поэтому мир красок, воспринимаемых этими животными, существенно отличается от нашего.
Солнце — не единственный источник света. Помимо него существует множество других тел, излучающих электромагнитные волны видимого диапазона. Среди них есть искусственные и естественные источники света.
Естественные источники света — это Солнце, звезды, атмосферные разряды, а также светящиеся объекты животного и растительного мира. Это могут быть светлячки, гнилушки и пр.
Искусственные источники света, в зависимости от того, какой процесс лежит в основе получения излучения, разделяют на тепловые и люминесцирующие.
К тепловым относят электрические лампочки, пламя газовой горелки, свечи и др.
Люминесцирующими источниками являются люминесцентные и газосветовые лампы.
Мы видим не только источники света, но и тела, которые не являются источниками света, — книгу, ручку, дома, деревья и др . Источники света мы видим потому, что создаваемое ими излучение попадает к нам в глаза. Предметы мы видим потому, что свет, достигнув предмета, отражается от поверхности и рассеивается по всевозможным направлениям.
На практике все источники света имеют размеры. При изучении световых явлений мы будем пользоваться понятием точечный источник света.
Если размеры светящегося тела намного меньше расстояния, на котором мы оцениваем его действие, то светящееся тело можно считать точечным источником.
Громадные звезды, во много раз превосходящие Солнце, воспринимаются нами как точечные источники света, так как находятся на колоссальном расстоянии от Земли.
Предметы, освещаемые точечными источниками света, например, Солнцем, отбрасывают четко очерченные тени. Карманный фонарик даёт узкий пучок света. Фактически о положении окружающих нас предметов в пространстве мы судим, подразумевая, что свет от объекта попадает в наш глаз по прямолинейным траекториям. Наша ориентация во внешнем мире целиком основана на предположении о прямолинейном распространении света.
Именно это допущение привело к представлению о световых лучах.
Световой луч — это прямая, вдоль которой распространяется свет.
Условно лучом называют узкий пучок света. Если мы видим предмет, то это означает, что нам в глаз попадает свет от каждой точки предмета. Хотя световые лучи выходят из каждой точки по всем направлениям, лишь узкий пучок этих лучей попадает в глаз наблюдателя. Если наблюдатель сдвинет голову чуть в сторону, то в его глаз от каждой точки предмета будет попадать уже другой пучок лучей.
А как распространяется свет?
Если между глазом и каким-нибудь источником света поместить непрозрачный предмет, то источник света мы не увидим. Объясняется это тем, что в однородной среде свет распространяется прямолинейно.
Впервые закон прямолинейного распространения света был сформулирован в III в. до н.э. древнегреческим ученым Евклидом. Под прямолинейностью распространения света он имел в виду прямолинейность световых лучей. Сам Евклид, правда, отождествлял лучи света со «зрительными лучами”, которые якобы выходили из глаз человека и в результате «ощупывания” предметов позволяли видеть последние. Такая точка зрения была достаточно широко распространена в древнем мире. Однако уже Аристотель спрашивал: «Если бы видение зависело от света, исходящего из глаз, как из фонаря, то почему бы нам не видеть в темноте?” Теперь мы знаем, что никаких «зрительных лучей” не существует, и видим мы не потому, что какие-то лучи выходят из наших глаз, а наоборот, потому что свет от различных предметов попадает нам в глаза.
Древние египтяне использовали закон прямолинейного распространения света для установления колонн по прямой линии. Колонны располагались так, чтобы из-за ближайшей к глазу колонны не были видны все остальные.
Прямолинейностью распространения света в однородной среде объясняется образование тени и полутени. Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на Земле в солнечный день.
Возьмём маленький источник света, например карманный фонарик S. Расположим на некотором расстоянии от неё экран, то есть в каждую его точку попадает свет. Если между точечным источником света S и экраном разместить непрозрачное тело, например мячик, то на экране увидим темное изображение очертаний этого тела — тёмный круг, поскольку за ним образовалась тень — пространство, куда не попадается свет от источника S. Если бы свет распространялся не прямолинейно и луч не был бы прямой линией, то тень могла бы не образоваться или имела бы другую форму и размеры.
Но чётко ограниченную тень, которая получена в описанном опыте, мы видим в жизни не всегда. Такая тень образовалась, потому что в качестве источника света мы использовали лампочку, размеры спирали которой намного меньше, чем расстояние от неё до экрана.
Если в качестве источника света взять большую, сравнительно с препятствием, лампу, размеры спирали которой сравнимы с расстоянием от неё до экрана, то вокруг тени на экране образуется еще и частично освещенное пространство — полутень .
Образование полутени не противоречит закону прямолинейного распространения света, а, наоборот, подтверждает его. Ведь в данном случае источник света нельзя считать точечным. Он состоит из множества точек и каждая из них испускает лучи. Поэтому на экране имеются области, в которые свет от одних точек источника попадает, а от других не попадает. Таким образом, эти области экрана освещены лишь частично, там и образуется полутень. В центральную область экрана не попадает свет ни от одной точки лампы, там наблюдается полная тень.
Тень — это та область пространства, в которую не попадает свет от источника.
Полутень — это та область, в которую попадает свет от части источника света.
Образованием тени при падении света на непрозрачный предмет объясняются такие явления, как затмения Солнца и Луны.
Луна светит не своим, а отраженным солнечным светом, впервые это понял древнегреческий ученый Демокрит (V в. до н.э.). Вид Луны на небе постоянно меняется (происходит, как принято говорить, смена фаз Луны): иногда мы видим ее в виде узкого серпа, иногда — в виде полного яркого диска. Происходит это из-за непрерывного изменения положения Луны относительно Земли и Солнца. Наблюдения за изменением лунных фаз позволили древнегреческому ученому Пифагору сделать еще одно открытие: Луна представляет собой не плоский диск, а шарообразное тело.
При движении вокруг Земли Луна может оказаться между Землей и Солнцем или Земля — между Луной и Солнцем. В этих случаях наблюдаются солнечные или лунные затмения.
Во время лунного затмения Луна попадает в тень, отбрасываемую Землей.
Во время солнечного затмения тень от Луны падает на Землю.
В тех местах Земли, куда упала тень, будет наблюдаться полное затмение Солнца, В местах полутени только часть Солнца будет закрыта Луной, т. е. произойдет частное затмение Солнца.
В остальных местах на Земле затмения не будет.
Поскольку движения Земли и Луны хорошо изучены, то затмения предсказываются на много лет вперед. Ученые пользуются
каждым затмением для разнообразных научных наблюдений и измерений. Полное солнечное затмение дает возможность наблюдать внешнюю часть атмосферы Солнца (солнечную корону). В обычных условиях солнечная корона не видна из-за ослепительного блеска поверхности Солнца.
можно взять видео о солнечном затмении